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Abstract
Plant innate immunity is composed of two layers – a basal immunity, and a specific effector-

triggered immunity, which is often accompanied by hypersensitive cell death. Initiation of

cell death depends on a complex network of signalling pathways. The phytohormone auxin

as central regulator of plant growth and development represents an important component

for the modulation of plant defence. In our previous work, we showed that cell death is her-

alded by detachment of actin from the membrane. Both, actin response and cell death, are

triggered by the bacterial elicitor harpin in grapevine cells. In this study we investigated,

whether harpin-triggered actin bundling is necessary for harpin-triggered cell death. Since

actin organisation is dependent upon auxin, we used different auxins to suppress actin bun-

dling. Extracellular alkalinisation and transcription of defence genes as the basal immunity

were examined as well as cell death. Furthermore, organisation of actin was observed in re-

sponse to pharmacological manipulation of reactive oxygen species and phospholipase D.

We find that induction of defence genes is independent of auxin. However, auxin can sup-

press harpin-induced cell death and also counteract actin bundling. We integrate our find-

ings into a model, where harpin interferes with an auxin dependent pathway that sustains

dynamic cortical actin through the activity of phospholipase D. The antagonism between

growth and defence is explained by mutual competition for signal molecules such as super-

oxide and phosphatidic acid. Perturbations of the auxin-actin pathway might be used to de-

tect disturbed integrity of the plasma membrane and channel defence signalling towards

programmed cell death.

Introduction
Animals use specific organs to fulfil specific functions. Plants lack such specialised organs, but
instead employ cells that are highly flexible in terms of function. Whereas mobile defence cells
constitute the core of animal immunity, plant defence is rather based upon the innate immuni-
ty of individual cells. This innate immunity derives from two layers [1]. The evolutionarily an-
cient PAMP-triggered immunity (PTI) is triggered upon recognition of conserved pathogen
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structures, so called pathogen-associated molecular patterns (PAMPs) through specific recep-
tors on the plasma membrane. Biotrophic pathogens that are specialised to a specific host, have
often evolved effectors that enter the cytoplasm of the host cell to quell the defence signalling
triggered by the PAMP-receptors as a prerequisite of a biotrophic lifestyle [2]. As strategy
against such advanced pathogens, plants have evolved additional pathogen-specific receptors
(encoded by so-called R genes) that specifically recognise the effectors in the cytoplasm and re-
install defence signalling leading to a second layer of defence, so called effector-triggered im-
munity (ETI) [3]. Often, ETI culminates in a hypersensitive response, a plant-specific version
of programmed cell death. Although the difference between PTI and ETI is less discrete than
previously thought, this conceptual dichotomy has been very useful to classify the huge variety
of plant defence responses.

To elicit the cellular events related to ETI-like programmed cell death, harpin proteins have
been useful. These bacterial proteins were first discovered in Erwinia amylovora, a phytopatho-
genic bacterium causing the fire-blight disease of apple and pears [4], and are components of a
bacterial type-III secretion system that can elicit host responses normally observed during the
defence against biotrophic pathogens, such as oxidative burst, accumulation of defence-related
transcripts, and cell death [5]. In our previous work, we have used a commercial preparation of
harpin N to induce the full repertory of ETI-related responses in suspension cells of grapevine
initiating with apoplastic alkalinisation, and oxidative burst, followed by activation of a MAPK
cascade, cytoskeletal reorganisation, and the induction of defence genes, leading to the produc-
tion of toxic phytoalexins, and terminating in cell death [6–8].

The cell death triggered by harpin elicitors is preceded by a rapid and specific reorganisation
of the actin cytoskeleton: The cortical actin filaments subtending the cell membrane detach,
and the entire actin skeleton contracts into dense cables towards the nucleus (Vitis rupestris in
response to harpin N [6]; tobacco BY-2 in response to harpin Z [9]; Arabidopsis in response to
flg22 [10,11]). A role of actin reorganisation for the induction of programmed cell death, a phe-
nomenon progressively emerging for eukaryotic cells in general [12,13], has also been demon-
strated for plant cells [14]. For instance, the bundling of actin cables in cells of the embryonic
suspensor is not only a manifestation of ensuing cell death, but has been shown to be necessary
and sufficient to initiate apoptosis in this system [15]

However, actin bundling does not necessarily result in cell death, but is also a typical feature
of cells that have terminated (or failed to initiate) elongation growth. In response to auxin,
actin bundles can be rapidly dissociated into fine strands, and growth resumes [16]. The fine
actin strands formed in response to auxin will, in turn, stimulate the efflux of auxin, probably
by modulating the cycling of auxin-efflux transporters between cytoplasm and the plasma
membrane. The resulting alterations in the efflux of auxin will, in turn, alter the organisation of
actin filaments, probably through modulation of actin-depolymerisation factor 2 [17], thus
constituting a self-referring regulatory circuit.

This actin-auxin circuit might be relevant for the antagonistic relationship between defence
and growth. The evolutionary background for this antagonism is to allocate resources other-
wise used for growth or defence [18]. In fact, when defence-related traits are genetically im-
paired, this results in higher growth rates [19]. The defence-related bundling of actin filaments
might therefore mediate an immediate arrest of cell growth, thus releasing all cellular resources
towards defence. On the other hand, auxin might, through dissociation of actin bundles into
finer filaments, modulate defence or even relocate cellular resources towards growth.

Prompted by these considerations we investigated, whether auxin can regulate defence re-
sponses elicited by harpin N in grapevine cells. We observe that apoplastic alkalinisation, the in-
duction of defence genes, the reorganisation of actin filaments, and cell death can be modulated
by natural and artificial auxins in a manner that is specific with respect to dose-dependency and
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transport properties of the respective auxin. We also observe that the modulating effect of auxin
upon cell death can be phenocopied by a mild treatment with Latrunculin B (a compound se-
questering G-actin). In addition, microscopical analysis of cortical actin in response to pharma-
cological manipulation shows that this dynamic population of actin is modulated by superoxide
anions and phospholipase D. Using malone dialdehyde (MDA) as readout for superoxide (gen-
erated by the NADPH oxidase RboH), we show that auxin can quell harpin-induced oxidative
burst. We discuss the data in the context of a model, where auxin, RboH, and actin are part of a
switch between growth and death.

Materials and Methods

Cell culture and treatments
Cell suspension cultures of Vitis rupestris and Vitis vinifera cv. ‘Pinot Noir’ established from
leaves were maintained in liquid MSmedium containing 4.3 g l-1 Murashige and Skoog salts
(Duchefa, Haarlem, Netherlands), 30 g l-1 sugar, 200 mg l-1 KH2PO4, 100 mg l-1 inositol, 1 mg l-1

thiamine, and 0.2 mg l-1 2,4-dichlorophenoxy-acetic acid (2,4-D), pH 5.8. Cells were sub-cul-
tured weekly by transferring 10 ml of stationary cells into 30 ml fresh medium in 100 ml Erlen-
meyer flasks and incubated on an orbital shaker (KS250 basic, IKA Labortechnik, Germany) at
150 rpm and 25°C in the dark.

A commercially available harpin elicitor (Messenger, EDEN Bioscience Corporation, Wash-
ington, USA; 3% of active ingredient harpin protein) was dissolved in MS liquid medium to
yield a stock solution of 300 mg ml-1 and administered in a concentration of 9 μg ml-1 [6]. In-
dole-3-acetic acid (IAA), α-Naphthalene acetic acid (NAA), and 2,4-dichlorophenoxyacetic
acid (2,4-D) were dissolved in ethanol to yield stock solutions of 100 μM, respectively. To assess
the role of actin filaments for cell viability, an inhibitor of actin polymerisation, Latrunculin B
(Lat B, Sigma, Deisenhofen, Germany) was employed at 2 μM based on results of previous
work in the same cell lines [7]. n-butanol, an inhibitor of phospholipase D, and its inactive ana-
logue sec-butanol were diluted into culture medium as solvent and used for observation of
actin dynamics. Diphenylene-iodonium chloride (DPI, Sigma-Aldrich, Deisenhofen, Ger-
many), an inhibitor of NADPH oxidase, was prepared in dimethylsulfoxide (DMSO) to a stock
solution of 10 mM. All treatments were accompanied by solvent controls, where the maximal
concentration of solvent used in the test samples was administered and not exceeded 0.1%. All
experiments were performed at day 4 after sub-cultivation, when the culture had completed
proliferation and was undergoing cell expansion.

Measurement of extracellular alkalinisation
Extracellular alkalinisation was measured by combining a pH meter (Schott handylab, pH 12)
with a pH electrode (Mettler Toledo, LoT 403-M8-S7/120), and recorded by a paperless read-
out (VR06; MF Instruments GmbH, Albstadt-Truchtelfingen, Germany). Before addition of
elicitors, cells were pre-adapted on an orbital shaker for at least 1 h. To test the effect of auxin
on harpin-dependent extracellular alkalinisation, the naturally occuring auxin, IAA, and two
synthetic auxins, NAA and 2,4-D, were applied. After adaptation, cells were inoculated with ei-
ther ethanol as a solvent control, harpin as a positive control, auxins without harpin (either
10 μM or 50 μM of IAA, NAA, or 2,4-D), or a combination of harpin with auxins (IAA, NAA,
or 2,4-D, respectively). The change of pH was recorded over time. The experiments were re-
peated at least five times.
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Analysis of gene expression
Total RNA was extracted from 1 ml of V. rupestris or cv. ‘Pinot Noir’ cells at day 4 after sub-
cultivation using the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) or the Plant Total
RNA Kit (Sigma, Deisenhofen, Germany), respectively, following the protocol of the producers.
Gene expression was analysed 30 min after addition of harpin, preceded by incubation for
60 min with the different auxins. The extracted RNA was treated with a DNA-free DNase (Qia-
gen, Hilden, Germany) to remove potential contamination of genomic DNA. The mRNA was
transcribed into cDNA using the M-MuLV cDNA Synthesis Kit (New England BioLabs; Frank-
furt amMain, Germany) according to the instructions of the manufacturer. The RNase inhibi-
tor (Invitrogen, Karlsruhe, Germany) was used to remove contamination by non-transcribed
RNA. Transcription of the selected genes (PAL, StSy, PR5 and PR10) was tested by semi-quan-
titative reversible transcription PCR (RT-PCR) following 30 cycles of 30 s denaturation at
94°C, 30 s annealing at 60°C, and 1 min synthesis at 72°C using a conventional PCR cycler
(peqLab Primus 96, Erlangen, Germany) using the primers referred to Kortekamp’s studies
[20] (S1 Table). The bands of the products were quantified using the Image J software (http://
rsbweb.nih.gov/ij/) and standardised relative to elongation factor 1α (EF 1 α) as internal stan-
dard [21]. The results were plotted as relative increase of transcript abundance as compared
with the untreated control. The data represent mean and standard errors from at least three in-
dependent experimental series. Statistical significance was tested by ANOVA analysis.

Determination of cell viability
To determine cell viability, cells were stained at different time points with Evans Blue [22].
Cells were transferred into a custom-made staining chamber [23] to remove the medium, and
then incubated with 2.5% Evans Blue for 3–5 min. After washing three times with distilled
water, cells were mounted on a slide and observed under a light microscope (Zeiss-Axioskop
2 FS, DIC illumination, 20 × objective). Due to the breakdown of the plasma membrane, Evans
Blue is capable of penetrating into dead cells, resulting in a blue staining of the cell interior. Fre-
quency of cell death was calculated as ratio of the number of dead cells over the total number
of scored cells. For each time point, 1500 cells were scored in three dependent experiments.

Visualisation of cytoskeletal actin filaments
Actin filaments were visualised by fluorescent phalloidin following the protocol published in
Waller and Nick (1997) [24] with minor modifications. The principle of this protocol is to use
a very mild fixation that will permeabilise the plasma membrane, but leaves the tonoplast
mostly intact to avoid cytoplasmic coagulations. After fixation in 0.85% (w/v) fresh parafor-
maldehyde in microfilament buffer [100 mM potassium phosphate buffer, 100 mM KCl, 0.25%
(v/v) Triton X100, pH 7.3] for 15 min, samples were washed three times for 5 min using a cus-
tom-made staining mesh [23], and then incubated in 130 nM fluorescein-isothiocyanate la-
belled phalloidin (Sigma, Deisenhofen, Germany) for 45 min. Subsequently, the specimens
were washed additional three times just prior to mounting for microscopical observation. Con-
focal images were recorded with an AxioObserver Z1 (Zeiss, Jena, Germany) using a 63x LCI--
Neofluar Imm Corr DIC objective (NA 1.3), the 488 nm emission line of an Ar-Kr laser, and a
spinning-disc device (YOKOGAWA CSU-X1 5000). Apparent thickness of actin cables was
quantified as described in Nick et al. (2009) [25]. In brief, projections of z-stacks over the corti-
cal layer were probed using the density profiling tool of the Image J software (National Institute
of Health) setting the width of the probing line to eight pixels to integrate over local differences
of fluorescence intensity. A grid of five lines oriented perpendicular with the longer cell axis
and spaced equally over its length were recorded and averaged for each cell. For each individual
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profile, a function f(di) of the measured density di was calculated over pixel position with the
equation as follow:

f ðdiÞ ¼ di
0�ðdiÞ ð1Þ

in the rising flank of an actin filament, this will produce a value of +1, in the dropping flank of
an actin filament, this will produce a value of -1, in the interspace between two actin filaments,
this will produce a value of 0. To discriminate random fluctuations of density from actin fila-
ments, the resulting values were multiplied with their preceding value (f (di) � f (di-1)), which
will reduce all random fluctuations to 0. In the next step, all values will be squared, such that all
pixels covered by an actin filament will get a value of 1. The sum S over the entire profile will
thus report the part of the profile that is covered by actin filaments. To determine the number
of filaments, the first derivative of the entire row is formed—this will be -1 at the leading edge
of a filament and +1 at its trailing edge. The number of filaments crossed by the profile can
now be obtained by summing up the squares of these first derivatives and dividing them by a
factor of 2 (because each filament has a leading and a trailing edge). The average thickness of
actin filaments w can now be calculated as ratio of S and the number of filaments. For each cell,
the values for 5 profiles are averaged.

Analysis of lipid peroxidation
Lipid peroxidation as readout for oxidative burst was determined by measuring the reaction
product Malondialdehyde (MDA) as described by Heath and Packer (1968) [26]. 2 ml of Vitis
cells were treated with 9 μg ml-1 harpin for 30 min, or pretreated with 50 μM IAA for 1 h fol-
lowed by harpin for 30 min using MS medium as control. Cells were sedimented and ground in
1 ml of ice-cold reagent [0.25% (w/v) 2- thiobarbituric acid (TBA) in 10% (w/v) trichloroacetic
acid]. After incubation at 95°C for 20 min, the extracts were cooled at room temperature and
then centrifuged at 12 000 rpm for 10 min. MDA-dependent conversion of TBA into a col-
oured adduct was determined in the supernatant by recording the absorbance at 532 nm as
compared to non-specific compounds at 600 nm using a ultraviolet spectrophotometer
(Uvicon).

Results

Auxin alters harpin-induced extracellular alkalinisation
It has been reported that auxin is linked to plant immunity [27,28], possibly connected with
changes of cell wall structure accompanying alterations of apoplastic pH [29]. Hence, the effect
of auxin on harpin-induced extracellular alkalinisation was investigated (S1 Fig). Most auxin
responses showed a characteristic bell-shaped dose-response curve for the natural auxin IAA
with an optimum at 10 μM, and a reduced effect at superoptimal concentrations (50 μM).
Therefore, these two concentrations were selected.

As Fig 1 shown, in V. rupestris, 10 μM of the natural auxin IAA promoted alkalinisation
slightly, but significantly, whereas the superoptimal concentration (50 μM) delayed the re-
sponse (Fig 1A). In cv. ‘Pinot Noir’, alkalinisation initiated at the same time, but was increasing
with a reduced slope, followed by a constitutively elevated pH (Fig 1B). Here, the auxin effect
was more pronounced for the high concentration. For the stable artificial auxin NAA, the alka-
linisation response in V. rupestris was inhibited already at 10 μM, and this inhibition was raised
even further at 50 μM (Fig 1C). For cv. ‘Pinot Noir’, the reduction in slope of the response and
the subsequent stable elevation of pH were stronger as compared to IAA (Fig 1D). The non-
transportable artificial auxin 2,4-D did not accelerate the response in V. rupestris, but increased
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Fig 1. Modulation of harpin-triggered apoplastic alkalinisation by different auxins.Cells were treated with 9 μg ml-1 harpin (hrp, closed circles) as a
positive control, harpin combined with 10 μM (open triangles) or 50 μM auxins (IAA, NAA, or 2, 4-D, closed triangles), or ethanol used as solvent control (con,
open circles) in V. rupestris (A, C, and E) and cv. ‘Pinot Noir’ (B, D, and F). Representative experiments from five biological replicas are depicted. Harpin and
auxin were added at time 0, if measured isolated, for the combinations, auxins were added 1 h prior to harpin.

doi:10.1371/journal.pone.0125498.g001
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its amplitude (Fig 1E), whereas in cv. ‘Pinot Noir’, the stable elevation of pH was even further
amplified over that observed for NAA (Fig 1F). Thus, in cv. ‘Pinot Noir’, auxins do not alter
the onset of the alkalinisation response, but slow its development and cause a stable increase of
pH depending on their stability and transportability. In contrast, in V. rupestris, the natural
auxin IAA accelerated the response, whereas NAA and 2, 4-D just changed its amplitude
(NAA negatively, 2, 4-D positively).

Auxin per se does not quell the induction of defence genes by harpin
A previous study has found for tobacco leaves that auxin can inhibit local and systemic immu-
nity without affecting defence-related genes [30]. We therefore selected StSy, PAL, PR5 and
PR10 as marker genes to investigate the effect of exogenous auxin on gene expression mediated
by the bacterial elicitor harpin. As time point we selected 30 min after addition of harpin, be-
cause we knew from previous time-course studies [8] that the transcriptional response was al-
ready fully achieved at this time point. In both V. rupestris and cv. ‘Pinot Noir’, the natural
auxin IAA did not significantly induce transcripts of StSy, PAL and PR10, and also did not af-
fect harpin-triggered StSy and PAL expression (Fig 2). The effect of NAA and 2, 4-D was very
similar to IAA without significant inhibition of StSy, PAL and PR10 transcripts. In contrast to
IAA and NAA, application of 2,4-D induced PR10 expression somewhat, but this induction
was not significant. Compared to control, addition of three auxins alone significantly down-
regulated PR5 transcripts especially in cv. ‘Pinot Noir’, whereas harpin-triggered PR5 expres-
sion levels remained basically unaltered. These modulations of transcription show that the
auxin treatments were biologically active and specific. However, none of these auxin treatments
was able to significantly alter the induction of defence genes by harpin.

Auxin inhibits harpin-induced cell death
Gopalan (2008) reported for tobacco that hypersensitive cell death initiated by harpin could be
reversed till a very late stage by auxins [30]. Also, both grapevine cell lines responded to harpin
treatment by induction of cell death, and this response could be quelled by pretreatment with
auxins. Compared with the solvent control, IAA, NAA, and 2,4-D by themselves, induced al-
most no cell death in V. rupestris (Fig 3A, 3C and 3E), but triggered a small, significant eleva-
tion of cell death in cv. ‘Pinot Noir’, reaching a maximum of almost 15% at 48 h followed by a
gradually decrease at 72 h (Fig 3B, 3D and 3F). However, harpin caused a strong increase in
cell death in V. rupestris up to almost 60% at 72 h (Fig 3E), and this induction of cell death was
significantly reduced when auxins were applied together with harpin, especially for IAA and
2,4-D (Fig 3A, 3C and 3E). In contrast, in cv. ‘Pinot Noir’, the induction of cell death by harpin,
although significant, was less pronounced and therefore also the fact that in the presence of the
three auxins cell death remained at a low level was less conspicuous compared to V. rupestris
(Fig 3B, 3D and 3F). These findings are consistent with Gopalan (2008), where auxin was
shown to suppress harpin-triggered cell death in tobacco [30], indicating that auxin also acts as
a negative regulator in ETI-like cell death in V. rupestris.

Actin is involved in auxin-dependent modulation of harpin-induced cell
death
It has been shown that auxin transport is dependent upon actin filaments, and application of
exogenous auxin can induce debundling of actin filaments [16]. Since bundling of actin is an
early and necessary event in plant cell death [14], the inhibition of harpin-induced cell death
by auxin (Fig 3) might be caused by auxin-dependent remodelling of actin. To investigate this
possibility, we asked, whether pharmacological manipulation of actin would interfere with
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harpin-triggered cell death as well. We used Latrunculin B (LatB), a drug that irreversibly se-
questers G-actin and thus impinges on actin filaments depending on their innate turnover. Ap-
plication of LatB alone did not trigger cell death, neither in V. rupestris (Fig 4A), nor in cv.
‘Pinot Noir’ (Fig 4B). However, LatB significantly suppressed harpin-triggered cell death from
24 h in V. rupestris (Fig 4A), but hardly in cv. ‘Pinot Noir’. Furthermore, the combined effect of
LatB and three auxins on harpin-induced cell death was monitored. It was clearly seen that
LatB combined with auxins suppressed harpin-triggered cell death at 24 h in V. rupestris. LatB
in combination with the different auxins was not able to enhance the amelioration reached by
the auxins alone, especially prominent for NAA (compare Figs 4A and 3C). In cv. ‘Pinot Noir’,

Fig 2. Effect of auxins on the induction of defence genes by harpin. Expression of selected defence genes was conducted by semiquantitative RT-PCR
in response to harpin (hrp, 9 μg ml-1), auxins (IAA, NAA or 2, 4-D, 50 μM), or auxins combined with harpin as compared to ethanol as solvent control (con) in
V. rupestris (A) and cv. ‘Pinot Noir’ (B). Transcript abundance was analysed 30 min after addition of harpin preceded by incubation for 60 min with the
respective auxins. Genes included StSy, stilbene synthase; PAL, phenylalanine ammonia lyase 1; PR5, PR10, pathogenesis-related proteins 5 and 10).
Quantification of transcripts were calculated relative to elongation factor 1α (EF1 α) as internal standard. The data represent mean values from three
independent experimental series; error bars show standard errors. Expression difference of defence gene as compared to solvent control were analyzed
using ANOVA with * significant at P = 5%, and ** significant at P = 1%.

doi:10.1371/journal.pone.0125498.g002
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where harpin-triggered cell death was less pronounced, as well as the effects of the different
auxins (Fig 3B, 3D and 3E), the combination of LatB with these auxins yielded only marginal
effects compared to treatment with harpin alone. These results support a scenario where actin
assembly participates in harpin-induced cell death, providing a partial phenocopy of the auxin-
dependent modulation of harpin-induced cell death.

Fig 3. Effect of auxins on harpin-induced changes of viability. Following subculture weekly, cells were treated with 50 μM of the three auxins IAA, NAA
and 2,4-D, with 9 μg ml-1 harpin (hrp), or with combinations of harpin with the auxins in comparison to ethanol as a solvent control (con) in V. rupestris (A, C,
and E) and cv. ‘Pinot Noir’ (B, D, and F). Data showmean and standard errors from three independent experiments. Brackets indicate significance levels of
differences using ANOVAwith * significant at P = 5%, and ** significant at P = 1%.

doi:10.1371/journal.pone.0125498.g003
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Harpin-induced actin bundling is reversed by auxin in a phospholipase D
dependent manner
To further assess the effects of harpin and auxins on the organisation of cortical actin, microfil-
aments were visualised by fluorescent phalloidin and single sections recorded by spinning-disc
confocal microscopy in the cortical cytoplasm. To exclude differences caused by cell-cycle

Fig 4. Effect of Latrunculin and auxins on harpin-induced changes of cell viability.Cells were treated with Latrunculin B (Lat B, 2 μM), with harpin (hrp,
9 μg ml-1), or with LatB in combination with harpin and auxin (IAA, NAA or 2, 4-D, 50 μM) following subculture weekly, versus ethanol as solvent control (con)
in V. rupestris (A) and cv. ‘Pinot Noir’ (B). Data showmean and standard errors from three independent experiments with 500 cells. Significance levels of
differences was analyzed using ANOVA with * significant at P = 5%, and ** significant at P = 1%.

doi:10.1371/journal.pone.0125498.g004
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dependent actin remodelling, cells were probed during expansion phase (as for the other exper-
iments). As shown for representative treatments (Fig 5), the cortical actin altered its degree of
bundling depending on the treatment (a quantification of this effect is given in Fig 6). In con-
trol cells incubated for 30 min in cultivation medium, a meshwork of filaments was observed
emanating from more bundled cables (Fig 5A). Following incubation for 30 min with the usual
concentration of harpin (9 μg ml-1), the cables were clearly predominant and also had become
thicker (Fig 5B), which was more pronounced in V. rupestris than that in cv. ‘Pinot Noir’
(Fig 6). In contrast, for incubation with 10 μM of IAA (in absence of harpin) such bundles
were absent (Fig 5C).

To test, whether these responses were dependent on the activity of phospholipase D, we
used a pretreatment with 30 min of the inhibitor n-butanol [0.5% (v/v)]. The pretreatment by
itself caused actin bundling that was comparable to that induced by the harpin treatment (com-
pare Fig 5D with Fig 5B). Interestingly, harpin added following this n-butanol pretreatment
eliminated actin filaments completely, such that almost no F-actin was detectable upon

Fig 5. Response of cortical actin filaments to harpin, auxin, or n-butanol, an inhibitor of phospholipase D in V. rupestris. Representative confocal
sections in the cortical region after visualisation of actin by fluorescent phalloidin following incubation for A,D 30 min in cultivation medium (); B,E 30 min in
medium supplemented with 9 μg.ml-1 harpin;C,F 30 min in medium complemented with 10 μM of the natural auxin indole-3-acetic acid.A-C without n-
butanol preincubation, D-F with n-butanol preincubation (30 min, 0.5% (v/v) n-butanol.

doi:10.1371/journal.pone.0125498.g005
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Fig 6. Quantification of actin responses by measuring apparent width (w) of actin bundles. A Time
course of actin bundling in response to 9 μg.ml-1 harpin.B Dose-dependency of harpin-induced actin
bundling over different concentrations of either the natural auxin indole-3-acetic acid (IAA), or the artificial
auxins 1-napthyl acetic acid (NAA), or 2,4-dichlorophenoxy acid (2,4-D) as compared to the control (con) or
harpin (hrp) in the absence of supplemental auxins measured after 60 min of incubation in V. rupestris and cv.
‘Pinot Noir’. Concentrations of auxins indicated in μM. "n.d." means "not determined" to indicate that this
value was not measured in cv. ‘Pinot Noir’ (to distinguish it from a zero value).C Effect of pharmacological
inhibition of phospholipase D by preincubation with 0.5% (v/v) of n-butanol or the inactive analogue sec-
butanol for 30 min prior to the indicated treatment for 30 min, and effect of pharmacological inhibition of RboH
on harpin-induced bundling by preincubation with 20 μM dephenylene iodonium (DPI) for 30 min prior to the
indicated treatment for 30 min. IAA 10 μM indole-3-acetic acid, hrp 9 μg.ml-1 harpin. Arrows represent
complete elimination of actin, such that no value for bundling could be measured. n represents the number of
individual cells per sample, error bars standard errors for a population randomly collected from three
biological replicates and 200 cells were used for each experiment. Brackets indicate significance levels of
differences with * significant at P = 5%, and ** significant at P = 1%. "n.d." means "not determined" to
indicate that this value was not measured (to distinguish it from a zero value).

doi:10.1371/journal.pone.0125498.g006
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phalloidin staining (Fig 5E), and this effect could not be prevented, when 10 μM IAA were
added together with harpin (Fig 5F). These cells died soon afterwards.

To characterise these effects on a statistical basis, average apparent thickness of actin cables
was quantified as described in Nick et al. (2009) [25] following variations of treatment parame-
ters. First, the time course of harpin-induced actin bundling was followed (Fig 6A). Bundling
had significantly increased already at the first assessed time point 15 min after addition of har-
pin, and increased further until reaching saturation at 30 min. This harpin-induced bundling
was suppressed, when simultaneously the natural auxin indole-3-acetic acid (IAA) was admin-
istered (Fig 6B), whereby already 1 μM of auxin produced a slight (but still insignificant) sup-
pression, and 5 μM of auxin could decrease bundling strongly down to the level observed in the
control. The transportable artificial auxin NAA was similarly in the suppression of harpin-in-
duced bundling. In contrast, the non-transportable artificial auxin 2,4-D given at 10 μMwas
significantly less efficient than the other two auxins, and at 50 μM of 2,4-D actin bundles were
only insignificantly thinner as compared to a treatment by harpin alone.

As mentioned above, a pretreatment with n-butanol, an inhibitor of the phospholipase D
caused actin bundling, and this bundling was almost as strong as that induced by harpin
(Fig 6C). However, whereas the harpin-induced bundling could be efficiently suppressed by
10 μM of IAA (Fig 6B), n-butanol induced bundling was persistent to auxin (Fig 6C). Harpin
administered following the n-butanol treatment eliminated actin filaments completely, such
that the values for bundle thickness became zero (Fig 6C, arrows). In contrast to n-butanol,
pretreatment with sec-butanol, an inactive analogue, left actin responses unaltered, both with
respect to harpin induced bundling as with respect to auxin-induced debundling (Fig 6C, white
bars). In a different set of experiments, we also probed for the influence of RboH by preincuba-
tion with the specific inhibitor DPI that, in previous studies had been shown to suppress har-
pin-induced gene activation [7]. Interestingly, preincubation by DPI alone induced some
bundling of actin that was significant, although it did not reach the same level as that induced
by harpin (Fig 6C, horizontally striped bars). Although both, DPI and harpin, given alone, in-
duced actin bundling, their combination produced actin filaments that looked fairly normal
and were also with respect to their degree of bundling comparable to the control situation.

Auxin quells Harpin-induced oxidative burst
To test, whether auxin can modulate the oxidative burst triggered by harpin, we probed for po-
tential changes of superoxide content using malone dialdehyde (MDA) as readout, a degrada-
tion product from lipid peroxidation triggered by partially reduced oxygen species (mainly
superoxide). Compared to the control, harpin induced a significant increase of MDA (Fig 7) in
V. rupestris indicative of a stimulation of oxidative burst, whereas this increase was almost
eliminated by pretreatment with IAA.

Discussion

Auxin modulates specific branches of defence signalling
In order to remain competitive, vegetative plant development is optimised for rapid growth.
However, to cope with unfavourable conditions—may it be abiotic or biotic stress—resources
have to be repartitioned in a balanced and regulated manner [18]. Auxin as major regulator for
growth is therefore expected to act as negative regulator of defence.

In fact, different events in auxin synthesis, signalling, transport as well as catabolic metabo-
lism have been shown to be modulated in the context of plant defence [27,31]. As to be ex-
pected, bacterial pathogens can produce their own auxin to use it as effector in order to quell
plant defence, and plants can restore defence by specific miRNAs to interfere with auxin
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signalling [32]. Exogenous auxin can promote disease symptoms as shown for the interaction
between Arabidopsis and P. syringae [33], Arabidopsis and B. cinerea [34], rice and X. oryzae
[35], tobacco and B. cinerea [36], or sweet orange and X. axonopodis [37]. In the current study,
we use a cellular model in grapevine to dissect the cellular events underlying this modulation of
defence signalling by auxin.

We observe that the natural auxin IAA can efficiently suppress cell death induced by the
elicitor harpin. This reduction can be mimicked by the actin assembly blocker Latrunculin B.
Together with the finding that harpin-induced actin bundling can be reversed by auxin (Fig 6),
this supports a model, that the modulation of harpin inducible cell death by auxin is associated
with actin reorganisation. In contrast, induction of defence genes and early apoplastic alkalini-
sation as markers for defence signalling are not quelled by auxins. Thus, harpin-triggered sig-
nalling seems to be bifurcated into a branch that is modulated by auxin, and a branch that is
not. It is the auxin-sensitive branch that conveys cell-death signalling and also involves actin.
The induction of the defence genes PAL, StSy, PR5, and PR10 seems to be conveyed by the
auxin-insensitive branch. This leads to the question, whether these different branches are
linked with the two layers of plant-innate immunity [1]

Auxin leaves basal defence unaltered
The basal layer of innate immunity (so called PTI) [1] that can be triggered for instance by the
PAMP flg22 involves a rapid influx of calcium that can be monitored by a rapid alkalinisation
of the apoplast and is followed by activation of a MAPK cascade culminating in the induction
of defence genes [38]. These events have been also observed in the grapevine cell models used
in the current study in response to flg22 and were mapped with respect to time course and am-
plitude [8]. Targets of this signalling are metabolic genes involved in the synthesis of stilbenes
that act as phytoalexins in grapevine. All of these events can be triggered by harpin as well.
However, in addition, harpin, induces a rapid oxidative burst and programmed cell death. In
the current study we asked, whether the response of basal defence (i.e. those events that are

Fig 7. Auxin quells the stimulation of oxidative burst induced by harpin.Concentrations of the lipid
peroxidation product malone dialdehyde (MDA) were determined as readout for superoxide-activity in cells of
V. rupestris either treated with harpin alone or following pretreatment with 50 μM IAA for 1 h. The response
was scored 30 min after addition of 9 μg ml-1 harpin. As negative control, cells were incubated with culture
medium. Values represent means and standard errors from three independent biological replicas for the
increase in MDA over the control. Brackets indicate significance levels of differences with * significant at
P = 5%, and ** significant at P = 1% as tested by a paired t-test.

doi:10.1371/journal.pone.0125498.g007
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activated by both flg22 and harpin) can be modulated by auxin. However, for none of the three
auxins (IAA as natural auxin, NAA and 2,4-D as artificial auxins), there was a significant mod-
ulation of the tested defence genes (PAL, StSy, PR5 and PR10).

Apoplastic alkalinisation is often used as early and convenient readout for the activity of the
calcium influx activating basal defence [39] and did show certain modulations. However, we
did not observe a temporal shift of rapid alkalinisation, but rather changes in the amplitude of
the sustained change in pH. These changes are to be expected from auxin-induced modulation
of proton pumps situated in the plasma membrane that are thought to play a role in growth-re-
lated relaxation of the cell wall [40]. For the rapid expression of defence genes, these sustained
changes of pH are most likely irrelevant, because they occur later. What is relevant is the onset
of alkalinisation, because this part of the time course reports on the activity of defence-related
calcium influx: Interestingly, in V. rupestris, IAA advanced alkalinisation, and thus acts antago-
nistically to the expected acidification of the cell wall (Fig 1A). This advance was observed for
10 μM IAA (which corresponds to the optimum in the bell-shaped dose-response characteristic
for natural auxins) [26], but hardly detectable for a superoptimal concentration of 50 μM IAA.
The artificial auxins NAA (stable, transportable), and 2,4-D (stable, non-transportable) did not
advance the response, but merely reduced its amplitude, which is probably the consequence of
sustained auxin-induced activation of the plasma membrane located proton ATPases by these
stable artificial auxins. The accelerated harpin-triggered alkalinisation by 10 μM IAAmight be
related to auxin-triggered release of actin tension below the membrane that should amplify the
activity of mechanosensitive calcium channels [41]. This hypothesis is also consistent with our
previous observation that Latrunculin B can amplify alkalinisation [8]. What we did not ob-
serve, was a delay in the onset of harpin-triggered alkalinisation. Alkalinisation initiated at the
same time point throughout, no matter how the different auxin treatments subsequently mod-
ulated the amplitude of the response. This was consistent with the absence of any significant
auxin effect on the accumulation of the tested defence-related transcripts. Thus, basal defence,
as far as we have tested it, appeared to proceed independently of the auxin treatment.

Auxin modulates cell-death related defence through dynamic actin
In addition to general basal immunity leading to the accumulation of defence metabolites,
plants have evolved a second layer of immunity that culminates in programmed cell death, a
strategy that is especially efficient for the containment of biotrophic pathogens [1]. This layer
of defence can be elicited by treatment with harpin [8]. However, it can be efficiently produced
only in cells of V. rupestris but not in cv. ‘Pinot Noir’ (Fig 3), consistent with previous results
indicating that this response is clearly dependent on genotype [6,8]. A similar difference be-
tween the two cell lines is also observed with respect to the amplitude of the actin response (Fig
6), indicating that the difference between the cell lines must be located upstream in defence sig-
nalling. In fact, both lines differ in the amplitude of apoplastic alkalinisation evoked by harpin
treatment [6] as very early readout of defence indicating that either number or activity of the
calcium-influx channels that underlies this pH response, is reduced in cv. ‘Pinot Noir. Auxin
modulates both, the response of actin as well as the cell-death response (Figs 3 and 6) indicat-
ing that it acts downstream of the calcium channels, but upstream of actin. The different auxins
differed in their ability to quell harpin-induced cell death. The natural auxin IAA produced the
most pronounced and stable effect, whereas the artificial NAA was least effective, and the artifi-
cial 2,4-D showed intermediate activity on cell death (Fig 3). The small residual concentration
of 2,4-D which was present in all experiments to sustain viability of the culture cannot account
for any of the observed differences, because it was present throughout, also in the controls. It
seems to be necessary to activate the synthesis of endogenous IAA required to organise cellular
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development [6,42]. Comparative pharmacology on the signalling triggered by these two artifi-
cial auxins in tobacco study demonstrated that 2,4-D signalling involves the activation of G-
proteins. In contrast, NAA signalling was independent of G-proteins [43]. The two auxins also
differ with respect to their effect on actin filaments: for roots of Arabidopsis 2,4-D has been re-
ported to eliminate actin (similar to Latrunculin B), whereas NAA does not [44]. On the other
hand, NAA is effective in detaching transvacuolar actin cables into finer strands, an activity
that is not observed for 2,4-D [45], and the same was observed for cortical actin in our experi-
ments (Fig 6B). In this study, the auxin effect on cell death could be mimicked by a mild treat-
ment with Latrunculin B (Fig 4), a compound that irreversibly sequesters G-actin and thus
eliminates actin filaments depending on their innate turnover [46]. Latrunculin B also acted
synergistically with IAA indicating that they share the same target. Thus, different auxin spe-
cies control different aspects of actin organisation. These findings point to a scenario, where
changes in dynamic actin filaments mediate the effect of harpin on programmed cell death.

The actin-auxin circuit as switch between life and death?
Auxin regulates actin organisation [45], which can be perfomed by controlling actin dynamics
via actin-depolymerisation factor 2 [47]. Actin, in turn, regulates auxin transport [25], consti-
tuting a self-referring oscillating circuit that underlies the regulation of cell expansion and cell
division by auxin [16]. Cell-death triggering elicitors such as harpin [6], HrpZ [9], or resvera-
trol [7], cause a breakdown of the dynamic meshwork of cortical actin filaments that is fol-
lowed by a contraction of actin cables. This actin is known to stabilize membrane integrity in a
great number of systems [48], and by TIRF microscopy fluorescently labelled actin can be de-
tected to be directly linked with the plasma membrane of plant cells [41]. A specific Networked
(NET) superfamily of actin-binding proteins specify membrane compartments differentially
interacting with actin [49]. This membrane-associated population of actin regulates membrane
integrity [50] and dynamics [51]. Perturbations of membrane integrity followed by rapid de-
tachment of actin and formation of actin cables participate in PTI and are regulated by actin
depolymerising factor 4 in Arabidopsis [10,11].

The observed antagonism between auxin and harpin-induced defence signalling, and the re-
sponse of actin in response to pharmacological manipulation of RboH and PLD was integrated
with the published records into a working model of molecular interactions at the plasma mem-
brane being aware that such a model must be a strongly simplified projection of the complex
and dynamic reality: harpin activates an oxidative burst [8], and requires the NADPH-depen-
dent oxidase RboH to activate defence genes such as stilbene synthase [7]. Although the molec-
ular identity of the receptor for harpin remains to be elucidated, it is possible to estimate the
abundance of the putative binding site by kinetic analysis to be in the μM range [6], which indi-
cates that the binding site must be a relatively abundant. Binding of harpin to this receptor acti-
vates RboH (Fig 8,①) resulting in accumulation of superoxide anions in the apoplast.
However, so far, the interaction of harpin with RboH has not been addressed experimentally.
The diffusion of superoxide anions can activate calcium influx, which can be monitored by
apoplastic alkalinisation [6,8]. This calcium peak will activate actin severing proteins such as
gelsolins [51]. However, superoxide anions can also permeate the plasma membrane and inter-
act with targets in the cortical cytoplasm.

One of these targets is actin itself: Oxidative stress will cause glutathionylation of a critical
cysteine residue in position 374 of actin and the glutathionylated actin (Fig 8,②) will be se-
questered from polymerisation [53,54]. Also in plants, oxidative stress results in glutathionyla-
tion of actin [55], suggesting that this mechanism has been conserved through eukaryotic
evolution. However, it has still to be demonstrated, whether this modification of actin is caused
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by superoxide anions generated by RboH as depicted in the model. The sequestration of G-
actin will progressively eliminate dynamic filaments due to their innate turnover, whereas non-
dynamic filaments or cables will persist and therefore become dominant.

However, actin is not the only target for cytoplasmic superoxide—this oxidative species (in
concert with or upon transformation into the messenger NO) is also recruited to transduce the
activation of phospholipase D (PLD) through small GTPases of the Rac family [56]. This event
is integrated into auxin signalling (Fig 8,③). In other words, there is a mutual competition of
both signalling pathways for superoxide as shared signal. By the way, also the use of this small
oxidative species as transducer of Rac GTPases seems to be an ancient motif of signalling, since
it has been originally discovered in the context of cell migration in mammalian cells [57,58].

Fig 8. Workingmodel on the antagonistic interaction of signalling triggered by harpin and auxin. To reduce complexity, only the earliest events are
depicted, omitting ROS activation of calcium influx and effects of rac1-signalling on auxin transport.① harpin activates the NADPH-dependent oxidase RboH
leading to the production of superoxide that can spread in the apoplast.② Superoxide can penetrate through the plasmamembrane (probably by
aquaporins) and glutathionylate actin in residue Cys374. This will sequester G-actin from being integrated into the growing end of actin filaments. ③
Alternatively, superoxide can be recruited to transduce the effect of auxin (perceived via the auxin-binding protein, ABP) upon the activation of phospholipase
D (PLD) through the small G-protein Rac.④ PLD will generate phosphatidic acids (PA) that can sequester actin capping proteins (cap) to the membrane,
such that elongation of actin filaments is enabled. Alternatively, PA can be partitioned to recruit Rac for the activation of the RboH complex. In this case, the
capping proteins will not be recruited to the membrane and constrain the elongation of actin filaments leading as secondary consequence to the formation of
thick cables through the activity of severing proteins in combination with free G-actin the formation.⑤ As third alternative, PA can be converted to PIP2,
which will recruit actin-depolymerization factor (ADF) to the membrane. Since ADF is sustaining the monomer turnover at the minus end of actin filaments,
this recruitment results in a higher stability of fine cortical actin filaments. The molecular targets for the inhibitors diphenyliodonium (DPI), and n-butanol are
inserted in red. Hypothetical aspects of the model that have not been addressed experimentally in plant cells, are indicated by blue question marks: The
interaction of Harpin with RboH (①) has not been addressed experimentally so far. Also the glutathionylation of actin in consequence of superoxide
penetration (②), so far has been shown for animal systems, but not been addressed in plant cells.

doi:10.1371/journal.pone.0125498.g008
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The activation of phospholipase D will produce phosphatidic acids (PA) as downstream
messengers. Again, there is quite some branching with respect to downstream targets (for re-
view in animal systems [59]; for review in plant systems [60]): (i) PA can sequester actin cap-
ping proteins, which will release elongation of the highly dynamic cortical filaments
subtending the plasma membrane [61]. (ii) PA can also be recruited to partition Rac1 for acti-
vation of RboH [62]. (iii) PA can be further converted to PIP2, which will sequester actin-depo-
lymerization factors (ADF) to the membranes [17], which will strongly reduce treadmilling at
the minus ends of actin treadmilling by a factor of 25 [63]. Since both, process (ii) and process
(iii) compete for PA, cortical actin filaments will be either in a state, where they elongate, but at
the same time treadmill at their minus end, or a state, where they stop elongation, but remain
stable due to suppressed treadmilling at their minus end. In addition, there will be a balance be-
tween auxin dependent actin-related targets of PA and recruitment of Rac1 and PA for the acti-
vation of RboH.

Although this (simplified) working model might appear complex at first sight, the central
points are straightforward: by mutual competition of the auxin and the harpin triggered path-
ways for superoxide (first level), for Rac (second level), and for PA (third level), the two path-
ways will act antagonistically. In the following, the observed actin responses will be explained
on the base of this model:

Under control conditions, RboH will provide a ground activity that will yield a low, but not
negligible abundance of superoxide that will be available for signalling triggered by endogenous
auxin (Fig 8,③). There is some PLD activity producing a ground level of PA and a smaller
amount of PIP2. As a consequence, there will be an equilibrium of capped and uncapped corti-
cal actin filaments with a relatively dynamic turnover.

In response to harpin, an excess of superoxide will be formed and produce glutathionylated
actin (Fig 8,①). This will cause dynamic actin filaments disappear swiftly (due to their innate
turnover). The activation of RboH will also cause a depletion of Rac and PA, which are reparti-
tioned towards oxidative burst (Fig 8,④), such that capping proteins (Fig 8,④) and ADF
(Fig 8,⑤) will detach from the membrane and eliminate cortical actin, because elongation is
suppressed by capping, and monomer loss is accelerated by free ADF at the minus end. The
ROS-triggered calcium influx [6,8] will activate actin severing proteins [52], and the simulta-
neous excess of G-actin from the decay of cortical filaments will therefore produce bundling of
actin cables [57].

In response to auxin, the activation of Rac will, by use of the low ground levels of superoxide
from the basal activity of RboH, activate PLD, and the formed product PA will recruit actin
capping proteins, such that elongation of cortical actin filaments is stimulated (Fig 8,④). In
addition, some of the PA will be available for the conversion into PIP2, which will sequester
ADF, such that the cortical actin filaments will be stabilised and predominate the formation of
bundled cables of actin (Fig 8,⑤). Since the activity of RboH is low, Rac remains mainly re-
cruited for PLD. When now, in addition, RboH is activated by simultaneous application of
Harpin, a part of the Rac will be repartitioned and this should result in a balance between dy-
namic filaments and actin cable, which is more or less the basal situation under
control conditions.

When PLD is blocked by n-butanol, this will cause a depletion of PA and PIP2, such that
the actin capping proteins and ADF are released from the membrane, mimicking the effect of
harpin with respect to actin bundling. If now, on the base of n-butanol pretreatment, harpin is
added, this will impact actin even more drastically up by the formation of glutathionylated
actin and this combinatorial effect might be the reason, why after combined treatment with
harpin and n-butanol no actin filaments could be detected. Since auxin is acting on actin
through PLD-dependent generation of PA and PIP2, a pretreatment with n-butanol cannot
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rescue the harpin triggered elimination of actin (in contrast to the situation without n-butanol
pretreatment).

A non-intuitive prediction by this model is that inhibition of the ground activity of RboH
using the specific inhibitor DPI will produce some actin bundling as well. This can be ex-
plained, because the activation of PLD by Rac requires some superoxide and will be impaired
after DPI treatment. Instead, a combinatorial treatment of DPI with harpin will generate a re-
duced level of superoxide, but apparently sufficient amounts to convey the signal from Rac to
PLD, thus establishing a more or less normal dynamics of actin, comparable to the situation in
the control.

A second prediction by this model is that auxin should quell RboH-dependent oxidative
burst by titration of superoxide anions for its own signalling. We have tested this prediction by
measuring malone dialdehyde (MDA) levels as readout for superoxide mediated lipid peroxi-
dation (Fig 8). As predicted by the model, we observe that the stimulation of MDA formation
is quelled by pretreatment with IAA (Fig 7).

In fact, the link between actin remodelling and programmed cell death is also well supported
across eukaryotic cells in general [12,13], and for plant cells in particular [14,15]. The actin-
auxin oscillator thus emerges as a signalling hub that can either function in the context of
growth and development, or in the context of defence-related cell death. The constrained har-
pin response in cells treated with Latrunculin B indicates that a dynamic population of actin
that represents a target for both harpin (as activator of cell death) and auxin (as inhibitor of
cell death). The efficiency of different auxin species is different and correlates with their effect
on actin dynamics not with their effect on actin bundling. We therefore think that it is this dy-
namic subpopulation of membrane-associated actin that is acting as switch between life and
death. Future work will be dedicated to uncover the molecular modifications of plant actin in-
duced by stress-related oxidative burst, such as the putative glutathionylation of actin.

What confers functional specificity to this array of actin filaments? Actin is a very conserva-
tive molecule, and the molecular differences between different actin isotypes are minor. Speci-
ficity must come from differential decoration with actin-associated proteins. In fact, using a
tetrameric photoswitchable fluorescent probe (psRFP) coupled to the actin binding Lifeact do-
main, it is possible to detect differences in decoration between cortical and perinuclear arrays
of actin [48]. Future work will therefore be dedicated to identify those actin-decorating proteins
and to probe for defence-related modulations of their activity.
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