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Microtubules are dynamic heteropolymers of a- and

b-tubulin that assemble co-ordinately in response to a variety

of intracellular and extracellular signals and participate in

a number of different functions in eukaryotic cells, from cell

division to organelle transport, from RNA positioning to

flagellar beating. In plant cells, microtubules assemble and

disassemble during the cell cycle to organize different

microtubule arrays. Interphase cortical microtubules have

a critical role in the construction of the cell wall by

controlling the correct deposition of cell wall polymers

(Lloyd and Chan, 2008). During cell division, microtubules

are arranged into characteristic structures. The preprophase

band (a circular array of microtubules) defines the future

construction site of the cell plate, thus imposing asymmetry

on the daughter cells. The mitotic spindle shares the

function of the analogous structure of animal and fungal

cells but its organization shows some critical differences,

mainly caused by the absence of centrioles. The phragmo-

plast is a special microtubule array that substitutes the

contractile ring of animal cells during cytokinesis, allowing

the synthesis of a new cell wall that physically separates the

two daughter cells. Since the four different microtubule

arrays have distinct features and structures, use of different

proteins (tubulin and non-tubulin) is a critical requisite for

the assembly of each array. Understanding how individual

proteins are used in the assembly of microtubules will allow

a clearer picture of how microtubules perform their function

and pass from interphase to mitotic arrays (and vice versa).
In this issue, Jovanovic and colleagues (Jovanovic et al.,

2010) report that the tyrosination/detyrosination cycle of

tubulin could regulate the transition of plant cells from the

elongation to the division stages. In their work, a specific

compound (nitrotyrosine) is used irreversibly to incorporate

tyrosine into detyrosinated a-tubulin; the consequence of

this post-translational modification is the inhibition of

mitosis and the increase in cell elongation. The article

points to the importance of post-translational modification

of tubulin in the reorganization of the microtubule cyto-

skeleton during the life cycle of plant cells. Although

microtubules within each array are apparently identical

in structure, plants have distinct gene sets coding for both

a and b -tubulin (Guo et al., 2009). Tubulin genes are not

expressed uniformly during plant development; for example,

a particular gene is expressed almost exclusively in re-

productive organs (Yu et al., 2009). At cellular levels,

distinct a-tubulin genes can be specifically expressed in cells

that exit from mitosis when transverse microtubules de-

termine the cell shape (Schröder et al., 2001). Generally, the

expression of tubulin isotypes seems to be tissue-specific,

a model that is also supported by immunological approaches

(Parrotta et al., 2009). The use of different tubulin isoforms

is further complicated by mechanisms of post-translational

modifications which are used to label subpopulations of

microtubules, and that work individually or in combination

at the level of single cells to control specific microtubule

functions in particular cell domains. The detyrosination/

tyrosination of tubulin is probably involved in controlling

the binding of plus-end tracking proteins and motor proteins

with microtubule depolymerizing activity (Peris et al., 2009);

glutamylation and glycylation are hypothetically involved in

the mechanism of microtubule severing by katanin (Sharma

et al., 2007). On the other hand, acetylation is a post-

translational modification detected in stable microtubules of

most cells, but is also likely to be involved in regulating

kinesin-based motility (Gardiner et al., 2007). Recently, the

discovery of phosphorylated tobacco tubulin suggested that

tyrosine phosphorylation is also involved in regulating the

properties of plant microtubules (Blume et al., 2008). A

recent report suggests that addition of putrescine to tubulin

by pollen transglutaminase can also regulate the binding and

release of kinesin to/from microtubules (Del Duca et al.,

2009). Consequently, current data from genetic and bio-

chemical approaches suggest a model in which development

of specific plant cells and tissues is characterized by the

expression of distinct tubulin genes and, consequently, by the

use of distinct tubulin isotypes, which are post-translationally

modified to control the binding of microtubule-associated

proteins (MAPs).
MAPs are used to assemble different microtubule arrays

according to the specific stage of the cell cycle and their

interaction with microtubules is critical at almost every stage

of microtubule life. After one microtubule is assembled by

a cTuC nucleating complex (containing c-tubulin and several

gamma complex proteins or GCPs), stabilization of the

growing end is supported by binding to specific proteins,

such as MOR1, and/or by putative association with the
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plasma membrane through plus-end proteins like CLASP.

Subsequent detachment of microtubules from the nucleating

complex is probably supported by the activity of katanin.

Net addition of a/b-subunits to the plus-end and the

concomitant removal of subunits at the minus-end generate

a treadmilling process, which is responsible for the trans-

location of microtubules in the cell cortex (plant MAPs are

reviewed by Hamada, 2007). This process brings micro-
tubules in contact with other cortical (bundles of) micro-

tubules. In this context, post-translational modifications like

glutamylation and glycylation hypothetically constitute

signals for the severing activity of katanin (Sharma et al.,

2007), which could cut microtubules in order to increase their

number. Microtubules moving by treadmilling in the cell

cortex can be captured by other microtubules and organized

into larger bundles by, for example, proteins of the MAP65
family (Van Damme et al., 2004). In interphase cells,

microtubules are anchored along their length to the plasma

membrane by proteins that stabilize microtubules, such as

p161 (Cai et al., 2005), and/or by proteins that mediate the

intercellular communication, like phospholipase D (Gardiner

et al., 2001). Association of the plus-end of microtubules

with the plasma membrane and with the endomembrane

system is probably mediated by a class of proteins collec-
tively known as +TIPs, so far including EB1, SPR1, and the

kinesin-14A ATK5 (Pastuglia and Bouchez, 2007). Associa-

tion of +TIPs with microtubules is potentially regulated

by the C-terminal detyrosination/tyrosination of tubulin.

Although previous studies showed that detyrosinated micro-

tubules are less dynamic than those containing tyrosinated

tubulin, more recent investigations indicate that the detyrosi-

nated form of tubulin interacts specifically with kinesin-1

(Liao and Gundersen, 1998), while tyrosinated microtubules

interact preferentially with the plus-end protein CLIP170

(Hammond et al., 2008). These findings suggest that the

tyrosination/detyrosination of plus-end tubulin can regulate

the binding of microtubules to MAPs and, consequently,

their dynamics. Association of microtubules with motor
MAPs could also be controlled by other post-translational

modifications: microtubules containing acetylated tubulin

interact preferentially with the motor proteins kinesin-1 and

dynein (Fukushima et al., 2009) while the addition of

polyamines by transglutaminase changes the binding proper-

ties of kinesin (Del Duca et al., 2009). Consequently,

the interaction of microtubules with associated proteins

regulating their function and dynamics is speculatively
dependent on various types of local post-translational

modifications. It is still unknown whether the lateral

association of microtubules with actin filaments, which is

required for the assembly and directionality imposed on

transverse microtubules by the actomyosin-based cytoplas-

mic streaming (Sainsbury et al., 2008), needs specific post-

translational modification of tubulin. Plant kinesins with

a calponin-homology domain (KCH) (Frey et al., 2009)
and structural MAPs, like MAP190 (Igarashi et al., 2000),

are candidates for this function and they could putatively

be regulated by post-translational modifications of tubulin

(Fig. 1).

The transition from interphase to mitotic microtubules is

marked by the disassembly of microtubule bundles beneath

Fig. 1. Speculative activity of post-translational modifications and MAPs during the assembly of microtubule bundles in interphase cells.

After transcription and translation, tubulins are modified by the addition/removal of specific groups. Such modifications, which are likely

to occur at the level of both monomers and polymers, hypothetically regulate the binding of motor and non-motor MAPs to microtubules.

See the text for further explanation. Abbreviations: c, gamma tubulin; ?, hypothetical protein. The pair of diverging short arrows at the

minus-end and plus-end of the microtubules indicates shortening and elongation. (This figure is available in colour at JXB online.)
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the plasma membrane and by the co-ordinated assembly of

new microtubules. Current literature provides few indica-

tions on the post-translational modifications of tubulin

during the transition from interphase to mitosis in plant

cells. Since the detyrosinated form of tubulin interacts

specifically with kinesin-1 while tyrosinated microtubules

interact with plus-end proteins, the incorporation of tyro-

sine could enhance the binding to specific MAPs (such as
+TIPs), which changes the equilibrium between cell elonga-

tion and mitosis. In this context, the work of Jovanovic

et al. (2010) suggests that the post-translational modifica-

tions of tubulin could be part of the mechanism that

regulates the transition from interphase to mitotic micro-

tubules. Another ‘controller’ could be acetylated tubulin,

which interacts preferentially with kinesin-1 and dynein

(Fukushima et al., 2009) and is localized at the poles of the
plant mitotic spindle (Smertenko et al., 1997). Speculatively,

acetylation of tubulin could mark specific subsets of micro-

tubules involved in the assembly of the mitotic spindle. The

organization of the mitotic apparatus also requires the

co-ordinated bundling of microtubules into parallel and

anti-parallel orders. The MAP65 protein family performs

a critical role because distinct members of MAP65 are

localized to specific sites of the mitotic spindle (MAP65-1
and MAP65-3 localize to the spindle midzone during

metaphase and anaphase while MAP65-4 is preferentially

localized at the spindle poles) (Van Damme et al., 2004). A

progressively increasing literature suggests that a number of

mitosis-specific kinesins plays a crucial role in the assembly

of the mitotic spindle in vascular plants, such as

AtKRP125c/kinesin-5 (Bannigan et al., 2007) and the

PAKRP1/Kinesin-12A and PAKRP1L/Kinesin-12B, which
localize at the juxtaposing plus-ends of antiparallel micro-

tubules in the phragmoplast (Lee et al., 2007). Depicting the

interplay between post-translational modifications of tubu-

lin and the microtubule binding of both motor and

structural MAPs in interphase and mitotic plant cells may

be a critical priority in the future.
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