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SI Methods and Material 

The elastic relaxation forces along the filament ∫dFκ,MT are reduced by filament friction 
∫dFγ,MT and act in lateral y direction. Due to the homolog constraint of the filament of constant 
length L and its connection to the optically trapped beads, the resulting elastic forces of the 
microtubule Fκ,MT push the beads outwards in x-direction and are counteracted by the optical 
forces Fopt. Whereas the friction force Fγ,B on the bead in the sensor trap (blue) is negligible 
small, the viscous force on the oscillating actor bead (red) counteracts the driving force Fdrive. 

 

Fig. S1. Force diagrams of a buckling filament held by two optical traps in the case of relaxation or compression, 
for a pulling or a pushing driving force, respectively. The local elastic forces on different parts of the filament 
and the resulting elastic forces are shown in green, all viscous forces are shown in blue. 
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The tension free equation of motion for relaxation (Fdrive in positive x-direction) reads  

11 1 1 ,
1
2 1

1
,2( ) ( ) ( ( )) ( ( )) ( )

B MT MTxopt B drivx eB BF x F x F u x F u x F x− − + − = −γ γκ     for the left bead and  

2

1 1
,22 2 2 , 2

0

( ) ( ) ( ( )) ( ( )) 0
B MT MTopt B B x xF x F x F u x F u x
→

+ + =−+
))(γ γκ                   for the right bead. 

 

Micro-rheology analysis 

The measured, frequency dependent displacements xBi, yBi of bead i as a response to an 
applied actuation force ( )

x
jF , ( )j

yF  on bead j is given by the response functions ( , )
x
i jA , ( , )i j

yA  

according to Eq. (S1) 
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In active micro-rheology as it is used here, the driving force F = κ·xL(t) is generate by a 
sinusoidal oscillation xL(t) = Aasin(ωat) of one optical trap with stiffness κ, amplitude Aa and 
driving frequency ωa. To obtain the complete spectrum A(ω), the experiment has to be 
repeated several times for different actuation frequency ωa and evaluated according to Eq. 
(S1) for each frequency ωa. As explained in the main paper, the measured bead displacements 
xB, yB are a superposition of the elastic trapping force, the viscous drag of beads and the 
wanted viscoelastic properties of the material under investigation, i.e., of the microtubule 
filaments in our case. Hence, the response function A is a superposition of these contributions 
as well. As explained in (1, 2) given by Eq. (S2), this can be separated to obtain the pure 
viscoelastic response function GMT of the filament: 
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Here, κ(i) and κ(j) are the trap stiffnesses of the corresponding traps which have to be 
determined independently by calibration (3, 4). Different pre-factors 4πL and 8πL for 
different directions take care of the hydrodynamic coupling ,y ,x2 8HC HC Lγ γ π ηω= =  of distant 

sites (1) separated by the distance L. In the main paper, we usually used the notion parallel (||) 
and perpendicular (⊥) instead of x and y according to the direction of oscillation with respect 
to the filament orientation. 

To ensure correct results we tested the software implementation and measurement procedure 
for simple beads in water, where the viscoelastic response is known theoretically and 
measured experimentally (1).  Since the motivation of the paper is to study the transport of 
mechanical stimuli, only the elastic components ( , )i jG′  (real part of G) are shown and 
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discussed in the main paper. Viscous components (imaginary part of G) are shown in the SI 
Results (see below). 

 

The molecular architecture of differently polymerized and stabilized filaments 

We choose filaments polymerized in the presence of a non or slowly hydrolysable GTP 
analog (GMPCPP) in addition to filaments assembled with GTP since both filament types 
have significantly different mechanical properties (5) ultimately governed by different 
molecular configurations as illustrated in Fig. S2. After polymerization, GTP molecules in the 
microtubule lattice hydrolyze stochastically to GDP. While GTP and GTP-analog tubulins 
adopt a straight conformation, the hydrolysis at the β-tubulin leads to a kink of the GDP 
tubulin dimer resulting in an intrinsic strain in the microtubule lattice (6, 7). This 
conformational change is slowed down by Taxol (8) which binds on the inside of the hollow 
tube (9, 10) and has been used to theoretically recapitulate the tip structure and rates of 
assembly/disassembly of microtubules (11), the occurrence of long-lived arcs and rings in 
kinesin-driven gliding assays (12) and to transform MTs into inverted tubules facing their 
inside out by a specifically induced conformational change using spermine, a polyamine 
present in eukaryotic cells (13). Further, microtubules polymerized in the presence of slowly 
or non-hydrolyzable GTP analogs such as GMPCPP or γ-S-GTP have additional lateral inter-
protofilament contacts between β-tubulins compared to GTP/GDP microtubules (5, 14). 
Assuming that the connection between individual αβ- tubulin dimers can be approximated by 
damped harmonic springs (15, 16), the damping of the intermolecular connections should 
affect the temporal response upon exertion of mechanical stimuli and thereby the transition 
frequency ωt. 

Taxolα-β tubulin dimer // GTP / GDP / GαPCPP

GDPGTP GαPCPP 10µα Taxol
+GTP/GDP

100µα Taxol
+GTP/GDP

100µα Taxol
+GαPCPP

Tubulin conformation
in protofilament

Integration into microtubule lattice 

 

Fig. S2. Effect of GTP, GDP, GMPCPP, Taxol and combinations thereof, on molecular conformation of the αβ-
tubulin dimer and corresponding binding sites.  
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SI Results 

Lateral forces are negligible 

In addition to the data shown in Fig. 2 of the main paper, we here compare the bead 
displacements along the x and y direction during a single filament rheology experiment at two 
oscillation frequencies f = 0.1Hz and f = 100Hz. As Fig. S 3 shows, the total contributions in 
lateral y-direction are negligibly small. Here, the lateral elastic MT buckling force 
FκMT,y(x,xBj) is increased (reduced) by the MT drag force FγMT,y(x, xBj) for deformation 
(relaxation). Both MT forces are equilibrated by the strong optical forces Fopt,y(xBj) and the 
weak viscous drag forces of the beads Fγ,y(xBj) in lateral direction. The sum of these forces is 
zero for all oscillation frequencies and phasings, i.e., Fopt,y(xBj) + Fγ,y(xBj) + FκMT,y(x, xBj) + 
FγMT,y(x, xBj)  ≈ 0. This situation is revealed in Fig. S 3: 
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Fig. S 3. Responses of the actor and sensor bead resulting from the oscillatory driving of the actor bead in 
longitudinal (x) direction. Displacements and forces are large in longitudinal (x) direction (A and C), but very 
small in lateral (y) direction (B and D) for longitudinal oscillation frequencies at f = 0.1Hz (A and B) and f = 
100Hz (C and D). 

 

Frequency dependent bead displacements 

The displacements xBi of the beads are governed by the elastic optical trapping force, the 
viscous drag force of the beads as well as the viscoelastic force from the microtubule filament 
according to Eq. (2) of the main article. In Fig. S4, we show the frequency dependence of the 
maximum actor and sensor bead displacement |xBi – xLi| during filament buckling and filament 
stretching. While an increase of the maximum amplitude of bead displacements of 
approximately one order of magnitude can be observed during buckling, bead displacements 
stay approximately constant and are proportional to the actor amplitude Aa during filament 
stretching. Already here, the connection between the constant low frequency plateau of G’ 
and its power law rise above ft ≈ 2Hz to filament buckling can be anticipated. The viscoelastic 
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contribution of the trapped beads alone moving in the purely viscous buffer medium is much 
smaller than the effect observed here and is dominated by the corner frequency ωc = κ / 
6πRBη ≈ 2500Hz of the position power spectral density |xB(ω)|² of the bead motion, which is 
much larger than the transition frequencies estimated for our MT constructs. 
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Fig. S4. Maximum displacement amplitudes |xBi – xLi| of both beads with index i relative to their trap centers xLi 
during single filament oscillation. (A) During the compression (buckling) half period. (B) During the stretching 
half period. 

 

Estimation of the total viscous force 

To distinguish the absolute role of the different forces introduced in Eqs. (1) and (2) of the 
main paper, we determine these contributions in the following. The results shown here are the 
basis of Fig. 2D of the main paper. 

The most obvious force is the viscous drag ,tranB
Fγ  of bead translation. The actor bead 

approximately follows the sinusoidal movement of its trapping focus and is much larger than 
that of the sensor bead, which is neglected for this reason. The movement of the actor trap is 
xL1(t) = Aasin(2πfat) resulting in the velocity vL1(t) = ∂/∂t xL1(t) = 2πfaAacos(2πfat). Only the 
maximal force components are considered in the following. Hence, the translational viscous 
drag force is given by Eq. (S3) and shown by the yellow line in Fig. S5B. 

 ( ),
2

1( ma) x 12
B a B BLtran a aF f R A fvγ π ηγ ==   (S3) 

The buckling filament causes both beads to rotate resulting in a rotational drag force ,rotB
Fγ  

governed by a varying angle 4( ) L

MTL LA
δϕ δ =  for different compressions δL of the filament as 

illustrated in Fig. S5A. Beads are rotated at the angular velocity ωB,rot = ∆ϕAfa with ∆ϕA = 
ϕA(Aa) resulting in the viscous torque M = γB,rot ωB,rot with , 8B rot BRγ π η=  (17). This torque is 
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balanced by a viscous force according to ,tranBBM R Fγ=  resulting in Eq. (S4) and illustrated by 

green line in Fig. S5B. 
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To calculate the viscous drags , ( )
LMT

F vγ δ�  and , ( )
LMT

F vγ δ⊥  acting on the MT during a parallel 

and perpendicular movement of the buckled filament with respect to the filament axis, the 
viscous drag coefficients of a rod 2

ln( ) 0.2L
D

c πη
−

=�  and 4
ln( ) 0.84L

D
c πη
⊥ +
= , the velocity of filament 

compression vδL = 2πfaAa and the buckling amplitude ( ) ( )2 2
( ) MT MT LL L

Lu δ
π πδ −= −  as a 

function of filament compression δL is needed. The latter is deduced further below (see Eq. 
(S7)). 

Assuming that the right side of the filament is approximately stationary while the left side 
moves at velocity vδL, the parallel force component can be estimated by integrating the force 
per unit length of a small portion of the rod at position x and moving at a velocity 

LMT L

x
L vδδ−  

over its entire length as illustrated in Fig. S5A. The result is shown in Eq. (S5) and Fig. S5B 
by the blue line. 
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In a similar fashion, the lateral force component can obtained by considering that both ends of 
the filament do not move in this direction in contrast to the filament center, and that the 
velocity of a small portion of the buckling rod at position x is determined by the temporal 
change ( ))( sinL

MT L

du
t

x
Ld
πd

d−  of the buckling amplitude. This results in Eq. (S6) and is described 

by the black line in Fig. S5B. 
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For comparison, we also plotted the experimentally obtained frequency dependence of the 
total force of a bead alone (yellow markers) and of a bead / MT construct (red markers) 
together with the total force of all contributions estimated above (red line) in Fig. S5B for an 
oscillation amplitude Aa = 600nm. For the situation of a bead alone, the mean force 

0.5 BF pN xκ≈ ≈  is constant until it intersects and overlaps with the translational viscous 

force ,B tranFγ  of the bead, which is dominant at high frequency.  
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Fig. S5. Estimation of viscous forces. (A) Illustration of experimental situation for a single filament held by two 
optically trapped beads, one static (trap 2) and one oscillating (trap 1). (B) Frequency dependence of 
theoretically obtained and experimentally measured force contributions. 

For the experimental situation with MT filament, the total force increases continuously but 
still intersects with the sum of all estimates of the viscous contributions made above at 
approximately f = 100Hz. This indicates a strong additional contribution from the MT, very 
likely of elastic nature as we obtained by the micro-rheology analysis for G’. 

 

Contributions of deformation modes to G’(ω) 

As stated in the main paper, we estimate to excite N = 3 deformation modes at oscillation 
frequencies up to fa = 100Hz. The contributions of each additional mode are illustrated in Fig. 

S6 where we plotted the theoretical slope of ( )2 4
1

41
12.16

1

1
1

/( , ) Re N

nB p n iG N q k T
p ω ωω

=

−

+
′ = ∑  for 

the sum of different deformation modes N = 1, 2, 3 and 10 (solid lines) according to Eq. 5. 
We normalized the shear modulus ( , ) / (0, )G N G Nω′ ′  to obtain a better estimate for the 
relative contributions. We also plotted the difference ( , ) ( , 1)G N G Nω ω′ ′− −  (dashed lines) to 
indicate the influence of a single mode and at which frequency the next mode kicks in. 

The first mode, causing a constant plateau, is dominant for low frequencies up to ω ≈ ω1. 
Higher deformation modes are excited and result in an increased filament stiffness for 
frequencies ω ≥ 3ω1 = ωt2 = ωt (N = 2) and ω ≥ 20ω1 = ωt3 (N = 3). Modes higher than N ≥ 4 
are relevant only for frequencies ω > 100ω1, which is beyond the experimentally addressed 
frequency limit in our study. 
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Fig. S6. Theoretical estimate of mode dependence of G’(ω). The elastic modulus G’(ω, N) is shown including  a 
different number N of deformation modes n (solid lines) as well as the difference of G’(ω, N) – G’(ω, N – 1) for 
different modes (dashed lines). 

Viscous components of single filaments 

The viscous modulus G’’(ω) of a simple bead in a ideally viscous solution such as water is 
G’’(ω) = γB·ω / 6πRB = ηω (1). Similarly, the viscous component of a rod can be expected to 
be G’’(ω) = γMT·ω / 4πL ~ ηω, i.e., linear with respect to the frequency ω. Indeed, this is what 
we observe for the viscous modulus of all single filaments as shown in Fig. S7A. The results 
still depend on the length LMT of the filament due to the logarithmic dependence of γMT ~ 1 / 
(ln(LMT / D) + 0.84) on LMT but does not depend on filament stabilization, contrary to G’(ω) as 
described in the main paper. 

A comparison to the theoretical prediction shown in Fig. S7B reveals that high deformation 
modes n ≥ 2 only slightly change this linear relationship and only for relatively high 
frequencies ω > 10ω1, which is roughly the maximum frequency we resolve in our 
experiments (ω1 ≈ 4Hz typically, see main paper).  
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Fig. S7. Viscous components G’’(ω) of single filaments. (A) Experimental results. Solid lines represent linear 
fits to the data. (B) Theoretical slopes for different number of oscillation modes N. 
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Viscous components of a linear connection of MTs 

Similarly to the viscous components of single MT filaments, the viscous components (1,2)
,G⊥′′ �  

and (1,3)
,G⊥′′ � of a linear connection of filaments are again linear with respect to frequency ω as 

shown in Fig. S8 by power law fits with free exponent p ≈ 1 in all cases.  
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Fig. S8. Viscous components G’’(ω) of a linear connection of filaments. Solid and dashed lines indicate 
approximately linear fits to the data. 

 

Pre-stress in triangular networks 

Free floating filaments are subject to Brownian forces and sometimes bend heavily. This can 
cause pre-stress during the construction of a network, i.e., the subsequent attachment of a 
filament to optically trapped beads. This effect becomes more prominent if the number of 
filaments of a network increases. Fig. S9 shows the elastic modulus G’ of three different 
equilateral triangles with a side length of 15µm. For both oscillation directions, the plateau of 
G’ is larger for the connection of the first filament 1→2 and smaller for the connection of the 
second filament 1→3 for the first two triangles, compared to the third triangle where the 
elastic moduli for both connections are approximately equal. This clearly indicates a pre-
stress of the first MT compared to the second filament. 
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Fig. S9. Pre-stress in an equilateral triangle. (A) and (B) G’(ω) for a radial oscillation along x for the connection 
1→2 (A) and 1→3 (B). (C) and (D) G’(ω) for a tangential oscillation along y for the connection 1→2 (C) and 
1→3 (D) 

 

Viscous components of triangular networks 

Again, we observe a linear relation between the viscous components G’’(ω) of filaments in a 
triangular networks and the frequency ω as shown in Fig. S10 together with power law fits 
with free exponent p ≈ 1. For the tangential oscillation along y, the viscous component (1,2)G′′  
of the first filament deviates strongly from the expected linear response for the first two 
triangle constructs, indicating that maybe the connection to either of the beads (1) or (2) was 
not perfect. 
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Fig. S10. Viscous components G’’(ω) of a triangular connection of filaments for actor bead displacement along x 
(left) and along y (right). Solid and dashed lines indicate approximately linear fits to the data. 

Comparison of transition frequencies 

As described in the main paper, we found that he transition frequency ωt, separating the 
constant plateau value of G’ for low frequencies from the high frequency rise approximately 
proportional to ω1.25, depends on filament length, stabilization, polymerization and especially 
on the geometry of the network. This is summarized in Fig. S11A. The transition frequency is 
the highest for the triangular network, which is also the stiffest. The difference of filament 
stabilization is clearly visible for long filaments. There is also a clear difference visible for 
different oscillation directions of all geometries, where the transition frequency is much 
smaller for an oscillation lateral to the filament axis, indicating much faster stiffening in this 
direction. 

In order to analyze how well the experimental transition frequencies match the theoretical 
predictions according to Eq. 3 of the main paper, we plotted the transition frequency as a 
function of MT contour length as shown in Fig. S11B. Here, we included the length 
dependence of the MT persistence length ( )( )2( , 0) / 1 /p p cl L l l Lω ∞= = +  according to 
Pampaloni (18). For the persistence length pl∞  of MTs much longer than a critical length lc = 
21µm, we used the values for L = 15µm long MTs obtained in this study to reflect the 
different stabilizations. 
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Fig. S11. Transition frequencies for different network geometries, filament stabilizations and polymerizations. 
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Geometric effects of beads 

MT filaments are attached laterally to the anchor beads with a diameter d = 1062nm. This 
results in a torque on the beads during filament buckling because the optical trapping force 
acts on their geometric centers. This causes the point of attachment of the filament to a bead 
to rotate. Hence, the precisely measured distance ∆xL + xB1 – xB2 between both beads does not 
coincide with the actual projected length pMT of the buckled filament as illustrated in Fig. 
S12A. For convenience, we assume the symmetric case with xB1 = xB2 = xB and ∆1 = ∆2 = ∆B = 
RB·sin(ϕ) ≈ RB·ϕ in the following. Neither the actual compression δL given by Eq. (S7) nor 
the rotation angle ϕ² = 4δL / LMT can be measured directly. 

 ( )2 2L MT MT MT L B BL p L x xδ = − = − ∆ + − ∆   (S7) 

However, both unknowns depend on each other leading to the quadratic relation 

( )8 22 4 1 0B L B

MT MT

R x x
L Lϕ ϕ ∆ ++ + − =  and ultimately to an expression for the angle ϕ which only 

depends on known or measured quantities given by Eq. (S8). 

 2

4 1 ( 2 1)
4

B MT
MT L B

MT B

R L L x x
L R

ϕ
 

= + −∆ −  
 

−   (S8) 

This can be substituted in Eq. (S7) to calculate the actual compression δL and to plot force 
compression curves, i.e., the buckling force F = κ1·xB1 + κ2·xB2 versus the compression δL as 
we show for two filaments with different length in Fig. S12C+D. The data shown here were 
obtained in a quasi-equilibrium where we moved trap 1 in discrete steps of ∆xL1 = 50nm every 
∆t = 100ms. 

In the ideal case, i.e., a perfectly axial application of force on the filament, the MT should not 
buckle, i.e., δL(F < Fcrit) = 0, until a finite critical buckling force Fcrit = π²EI / L²MT is reached, 
above which the filament behaves like a spring with spring constant κMT, i.e., δL(F > Fcrit) = 
(F – Fcrit) / κMT (17). Here, we observe a nearly exponential dependence of the force on the 
compression for small δL < 400nm and a linear dependence for δL > 400nm. This is due to the 
imperfect, lateral application of the force on the filament. We indicated this behavior in Fig. 

S12C+D by the blue fits with fit function 0( ) (1 )
x

x
crit MTF x F e xκ

−
= − + . From this, we 

determined the critical force Fcrit(LMT) for various filaments of different length as shown in 
Fig. S12B. As expected from the ideal case, the critical force increases with decreasing 
filament length, however, not as fast as the ideal 1 / L²MT dependence predicts. This is due to 
the length dependence of the persistence length 

2

2
1( ) (1 )c

MT
p M

L
LT pl L l∞ −= +  (18), which has been 

used together with Fcrit(LMT) = π²lp(LMT) kBT / L²MT to fit the data. Lc = 3.3µm is the critical 
filament length above which the persistence length levels to a plateau pl∞  = 2.2mm in our 

case. Pampaloni et al. (18) obtained Lc = 21µm and pl∞ = 6mm from their thermal fluctuation 

data. This deviation is likely a result of different filament polymerization and stabilization. 
However, we did not consider this geometric effect in our rheology experiments. We expect 
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this to have only a minor effect on the measured viscoelastic properties GMT of the filaments, 
but this has to be tested and included into the theory in the future. 
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Fig. S12. Geometric effect of filament attachment to the spatially extended anchor beads. (A) Sketch of the 
experimental situation. (B) Dependence of the critical force Fcrit(LMT) on the filament length LMT. (C) + (D) Plot 
of the total force F(δL) as a function of filament compression δL = LMT - pMT for a short MT (LMT = 5.1µm, Fig. 
C) and long (LMT = 15.9µm, Fig. D) MT. Experiments have always been repeated for an increasing buckle and 
back relaxation to the straight equilibrium position. 

 

Microtubule buckling amplitude 

For the integration step in equation (5) of the main manuscript, we need to derive an 
expression for the buckling amplitude uqn(δL) as a function of the compression δL(t) of the 
filament with shape ( ) ( )sin( )qn L n

n
u x u q x=∑ δ  and an arbitrary bending mode 

MT L

n
Lnq π

δ−=  . 

Considering the invariant arc length 2
!

1 ( )x T
u

MdxL L∂
∂′ = + =∫  of the buckled filament one 

obtains: 

 ( )( )2

0

1 cos
LL

n qn nL q u q x dx
−

′ = + ∑∫
d

  (S9) 

Since this square root cannot be solved analytically, we investigate the buckling amplitude uqn 
as a function of arc length nL′  for single bending modes n, where the ground mode n=1 allows 
to estimate the maximum possible deflection uq1 > u(x). 

Substituting ϕ = qnx leads to 
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 ( ) ( )2 2

2

1 1

0 0

2 2 2 2cos 2 cos
n n

q

n

n qnn q q
L u d n u d′ = + = +∫ ∫

ππ

ϕ ϕ ϕ ϕ   (S10) 

Using cos²(ϕ) = 1 – sin²(ϕ), equation (S10) can be rewritten in the form 

 ( )2

2

20

2 21
2

1 22 1 sin
n

n

n q qn
qn

q qn

u
u

L n u d
π

ϕ ϕ
+

′ = + −∫   (S11) 

Substituting 2
1 22
nqqn qnu n u′ = +  and 

2
1 2

2
n

qn qn

qnqnq

u u
n

uu
= =

′+
φ  the relation 

 ( )
!

( )MT qn isn LL L Eu φ φ δ′ ′= =   (S12) 

can be deduced. ( )isE =φ φ  2 2

0

21 sin (x)dx−∫
π

φ  is the complete elliptical integral of the second 

kind, which cannot be solved analytically. However, an approximation formula 
( )91

2 4
2 6

192
41 ( )isE O= − − +π

φ φ φ φ  can be used (19), leading to a first order 

approximation 2
1

2
2

n
MT qn qq nL u n uπ π′= = +  and ultimately to 

 ( )22 211u ( ) 2 ( ) ( )qn L MT MT L LMT L nn L L t tL ππδ δ δδ= − −− =   (S13) 

As shown in Fig. S13 for a microtubule with length LMT = 10 µm, the buckling amplitude uqn 
increases rapidly with small compressions δL < 50 nm and then approximately linearly for 
larger compressions δL > 100 nm. The buckling amplitude decreases with the mode number n. 
However, the sum of all deformations in a filament is always smaller than the ground mode 
buckling, i.e. u(x) <uq1. 
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Fig. S13. Buckling amplitude uqn(δL) as a function of filament compression δL and mode number n for a filament 
with length LMT = 10µm. 
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Linear system theory 

Our theoretical description as well as our analysis assume a linear relationship between the 
microtubule buckling amplitude uqn and the driving force FD, such that 

( ) ( ) ( )qn qn Du Fω α ω ω=  . 

In order to test whether the buckling responses of single MTs are linear with force, we 
analyzed the force dependency F(δL) on a stepwise MT compression by δL. Fig. S14 shows 
that F(uqn) increases indeed roughly linearly for not too large buckling amplitudes uqn(δL), in 
accordance with to Eq. S13.  

Linearity: By analyzing the normalized χ² value as a function of the number of data points 
included in a linear fit to the data, we find an approximately linear response up to uqn ≤ 300 
nm for short microtubules (L = 5µm) and uqn ≤ 1.4µm for long filaments (L = 15µm). This is 
equivalent to an oscillation amplitude of the laser trap xL < 500nm for short and xL < 1200 nm 
for long microtubules, respectively. In our rheology experiments, we usually analyze the 
microtubule response for three different oscillation amplitudes Aa = 200 nm, Aa = 400 nm, and 
Aa = 600 nm. Hence, linear response is well fulfilled for long microtubules and at least for the 
two smaller oscillation amplitudes for short filaments. In addition, we always compare the 
results for different oscillation amplitudes to each other and never observe a significant 
difference. 
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Fig. S 14. Compression force as a function of filament buckling amplitude for a short (A) and long (B) 
microtubule at ω ≈ 0. 
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Local forces acting along the filament 

The curve of a filament deformed in the mode qn can be described by the vector 

( ) sin( )qn n

xr x u q x
 =  
 

  and has a tangent vector  

( ) ( )( ) dr x dr xT x
dx dx

=
 

 2 2 2
1

1 cos ( )qn n nu q q x+
= ⋅  1

cos( )qn n nu q q x
 
 
 

,   (S14) 

such that the normal vector is ( )( ) ( )
y

x

T xN x T x
 =  − 


. From this, the local elastic force on an 

infinitesimal section of the filament can be calculated, according to 
4

4 q

4

2 2 2
sin( )

1 cos ( )
( ) cos( )f( ) ( ) 1

qn n nqn n n

qn n n

u q x
q

q
u x

d u x u q q xx EI N x EI
dx

⋅ ⋅

+
 = ⋅ = ⋅  − 

 
, leading to a total force which acts 

only in y direction 

 
0

3

0

,

2 2 2 ( ) 01 cos
F ( ) ( )

asinh( cos( ))

L
L

qn n nn

yqn qn n n

L
L

MT

u qEIx f x dx
Fu u q x

q xq
q

d
d

κ

−
−   − +    = = ⋅ =      

⋅

 
∫


 (S15) 

We like to point out the strong dependence of the local bending force on the third power of 
the mode number n, meaning that the highest present order always dominates the buckling 
force. 
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Fig. S 15. Filament deformation for the first and the third mode and the summation of both (flipped vertically). 
The resulting local force vectors are perpendicular to the filament tangent. 

 

16 
 



Additional references 

1. Atakhorrami M, et al. (2006) Correlated fluctuations of microparticles in viscoelastic 
solutions: quantitative measurement of material properties by microrheology in the 
presence of optical traps. Physical Review E 73(6):061501. 

2. Mizuno D, Head D, MacKintosh F, & Schmidt C (2008) Active and passive 
microrheology in equilibrium and nonequilibrium systems. Macromolecules 
41(19):7194-7202. 

3. Rohrbach A, Tischer C, Neumayer D, Florin EL, & Stelzer EHK (2004) Trapping and 
tracking a local probe with a photonic force microscope. Review of Scientific 
Instruments 75(6):2197-2210. 

4. Svoboda K & Block SM (1994) Biological applications of optical forces. Annual 
Review of Biophysics and Biomolecular Structure 23:247-285. 

5. Hawkins TL, Sept D, Mogessie B, Straube A, & Ross JL (2013) Mechanical 
properties of doubly stabilized microtubule filaments. Biophysical journal 
104(7):1517-1528. 

6. Hawkins T, Mirigian M, Selcuk Yasar M, & Ross JL (2010) Mechanics of 
microtubules. Journal of biomechanics 43(1):23-30. 

7. Müller-Reichert T, Chrétien D, Severin F, & Hyman AA (1998) Structural changes at 
microtubule ends accompanying GTP hydrolysis: information from a slowly 
hydrolyzable analogue of GTP, guanylyl (α, β) methylenediphosphonate. Proceedings 
of the National Academy of Sciences 95(7):3661-3666. 

8. Elie-Caille C, et al. (2007) Straight GDP-tubulin protofilaments form in the presence 
of taxol. Current Biology 17(20):1765-1770. 

9. Amos LA & Löwe J (1999) How Taxol® stabilises microtubule structure. Chemistry 
& biology 6(3):R65-R69. 

10. Nogales E, Wolf SG, Khan IA, Ludueña RF, & Downing KH (1995) Structure of 
tubulin at 6.5 Å and location of the taxol-binding site. Nature. 

11. VanBuren V, Cassimeris L, & Odde DJ (2005) Mechanochemical model of 
microtubule structure and self-assembly kinetics. Biophysical Journal 89(5):2911-
2926. 

12. Ziebert F, Mohrbach H, & Kulić IM (2015) Why Microtubules Run in Circles: 
Mechanical Hysteresis of the Tubulin Lattice. Physical Review Letters 
114(14):148101. 

13. Ojeda-Lopez MA, et al. (2014) Transformation of taxol-stabilized microtubules into 
inverted tubulin tubules triggered by a tubulin conformation switch. Nature materials 
13(2):195-203. 

14. Maurer SP, Fourniol FJ, Bohner G, Moores CA, & Surrey T (2012) EBs recognize a 
nucleotide-dependent structural cap at growing microtubule ends. Cell 149(2):371-
382. 

15. Pampaloni F & Florin E-L (2008) Microtubule architecture: inspiration for novel 
carbon nanotube-based biomimetic materials. Trends in biotechnology 26(6):302-310. 

16. Tuszyński J, Luchko T, Portet S, & Dixon J (2005) Anisotropic elastic properties of 
microtubules. The European Physical Journal E: Soft Matter and Biological Physics 
17(1):29-35. 

17. Howard J (2001) Mechanics of Motor Proteins and the Cytoskeleton. 
18. Pampaloni F, et al. (2006) Thermal fluctuations of grafted microtubules provide 

evidence of a length-dependent persistence length. Proceedings of the National 
Academy of Sciences of the United States of America 103(27):10248-10253. 

19. Bronstein IN, et al. (2001) Taschenbuch der Mathematik (Springer) 5 Ed. 

17 
 


