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To deal with different kinds of DNA damages, there are a number of repair pathways that must be carefully
orchestrated to guarantee genomic stability. Many proteins that play a role in DNA repair are involved in
multiple pathways and need to be tightly regulated to conduct the functions required for efficient repair of
different DNA damage types, such as double strand breaks or DNA crosslinks caused by radiation or
genotoxins. While most of the factors involved in DNA repair are conserved throughout the different
kingdoms, recent results have shown that the regulation of their expression is variable between different
organisms. In the following paper, we give an overview of what is currently known about regulating factors
and gene expression in response to DNA damage and put this knowledge in context with the different DNA
repair pathways in plants. This article is part of a Special Issue entitled: Plant gene regulation in response to
abiotic stress.
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1. Introduction

Analysis of the expression levels of different genes under various
conditions gives us multiple hints as to how, where, when and by
what factors genes are regulated. Although there are various
methods for analyzing expression levels, for example, powerful
microarray hybridization, sensitive real-time PCR or the fluorescent
imaging of proteins, the pathways responsible for regulating and
signaling the DNA damage repair mechanisms are still poorly
understood in plants. Only a handful of transcription factors that
are involved in these repair processes have been described.
Irradiation or treatment with genotoxins that cause DNA alterations
and therefore later on mutations, is used for studying the DNA
damage response in plants [1–13]. Several studies that used
expression arrays to study transcriptome alterations in response to
DNA damaging agents in Arabidopsis have previously been reported
[10,14–19]. Approximately 16,200 genes out of 27,000 showed
a signal higher than the background level in a high-density array
when the plants were treated with the double strand break (DSB)
inducing genotoxin, bleomycin, and the crosslink inducing geno-
toxin, mitomycin C (MMC) [10]. Further details about gene
regulation in response to DNA damage have been obtained by
comparing microarray studies of wildtype plants and plants with
mutations in their DNA repair genes [20–23].

To maintain genomic integrity, plants have several DNA repair
mechanisms to respond to different types of DNA damage. Most of
these DNA repair pathways are, in principle, conserved between all
kingdoms of life. The base excision repair (BER) and the nucleotide
excision repair (NER) pathway are activated by damage at nucleo-
tides. Besides the NER pathway, plants are also equipped with
photolyases, which can specialize in recovery from UV-induced
damages at nucleotides. Furthermore, two main pathways have
evolved to repair dangerous DNA double strand breaks: the non-
conservative, non-homologous end joining (NHEJ) pathway and the
conservative, homologous recombination (HR) pathway, which can
repair DSBs accurately and depends on the presence of a homologous
sequence in the genome (Fig. 1).

2. Signaling factors of DNA repair

The protein kinases ATM (ataxia telangiectasia mutated) and ATR
(ataxia telangiectasia and Rad3 related) play a central role in the
signaling in eukaryotes [24–29]. ATM and ATR are kinases that
mediate the signal cascade following DNA damage. The ATM kinase is
activated by DNA damage, such as DSBs, and activates downstream
signaling pathways, leading to the repair of DNA, transient arrest of
the cell cycle, and inhibition of DNA replication. The ATR kinase, on
the other hand, is activated by stalled replication forks, which can
occur either spontaneously or after genotoxic stress, UV irradiation or
hydroxyurea exposure [30]. In response, ATR regulates the slowing of
the cell cycle during S-Phase, and the G2/M progression [31]. ATM
kinases are well studied in mammals (for review see [31,32]).
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Fig. 1. Initial steps of the repair of double strand breaks in animal somatic cells. (A)
Following a double strand break occurs, (B) the MRN complex can identify the DNA ends
and activates ATM and ATR. Alternatively, the DSB can be repaired directly via
nonhomologous end joining (NHEJ) by ligating the ends together. This pathway, however,
is non-conservative, and some sequence alterations may occur at the double strand break
ends. (C)With the help of several other proteins, the 5′ ends are resected. The following
intermediate containing 3′ overhangs can be used for single strand annealing (SSA) if the
break occurred in a repetitive sequence. (D) Otherwise, the single stranded DNA is loaded
with RPA,which is later replaced by RAD51. For this step, the BRCA1 A complex is needed.
(E). Next follows the invasion of the nucleofilament into a homologous sequence (F). The
damage can then be repaired via the synthesis dependent strand annealing (SDSA)model
or the double strand break repair (DSBR) model.
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In contrast to other eukaryotes, the initial response to DNA
damage is still poorly understood in plants. Nevertheless, there have
been several studies on the functions of ATM and ATR in Arabidopsis
thaliana. Singlemutants of either AtATMor AtATR are viable and show
no developmental defects other than reduced fertility in Atatm
mutants [33]. In mammals, however, a single mutated protein results
in embryonic lethality, in case of atr [34], while an atm mutation
causes growth defects and infertility [35]. Only double Atatm and
Atatr mutants show sterility [36]. This pattern makes studying these
proteins in Arabidopsis very interesting. Furthermore, it has been
shown that AtATM is involved in the transcriptional response
primarily after double strand breaks, while AtATR plays a role in
signaling after replication blocking lesions [22]. Additionally, both
plant Atatm- and Atatr-mutants show an increased sensitivity to
ionizing radiation just like their mammalian counterparts [22].
Altogether these points suggest distinct and redundant functions for
AtATM and AtATR and that especially AtATM is involved in changing
gene expression following DNA damage.

In animals, there is a transcription factor, called p53, that exhibits a
critical role in orchestrating the response to DNA damage and that is a
well known tumor suppressor (reviewed in [37]). No homolog of this
protein has been identified in plants; however, a transcription factor,
AtSOG1 (suppressor of gamma response 1), that governs similar
functions was found in Arabidopsis some time ago [38,39]. AtSOG1 is
activatedbyAtATMandAtATR and is responsible for a large proportion
of the transcriptional changes in response to DNA damage. Because of
its important role as a transcription factor, it was discussed as a
possible analog to the critical transcription factor p53 in animals in
some aspects, although AtSOG1 and p53 share no sequence homology
[40]. AtSOG1 is an NAC (NAM, ATAF1, and CUC2) domain protein that is
unique to plants; it appears to be the important transcription factor
downstream of AtATM and AtATR and is required to alter gene
expression following a double strand break at almost all of the induced
genes [39]. However, its own transcription is not enhanced by DNA
damage [22].

AtATM and AtATR also control cell cycle checkpoints, and two
genes that participate in this task have been identified: the previously
mentioned transcription factor, AtSOG1, and the protein kinase,
AtWEE1 [39,41]. AtWEE1 is the main intra-S-phase checkpoint
regulator. Homozygous Atwee1 mutants show a prolonged S-phase
upon replication stress and, therefore, a delayed cell cycle progres-
sion. Furthermore, it is an inhibitor of premature xylem formation and
as such plays a role in development as well [42]. Microarray studies
have shown that AtWEE1, despite being an important cell cycle
regulator, is dispensable for the up-regulation of DNA damage related
genes after damage induction as well as for the repair of DSBs [42].

The mammalian DNA POL θ and its homolog, Drosophila MUS308,
were reported to be involved in tolerance of DNA damage [43,44] and
prevention of chromosome breakage [45]. A homolog has also been
found in Arabidopsis, TEBICHI (TEB) [46]. AtTEB possess both a
helicase and a DNA polymerase domain [46]. It was discussed that TEB
might regulate the expression of euchromatic genes through
chromatin remodeling [47]. In plants, AtTEB genetically interacts
with AtATR. The expression of a number of tandem and dispersed
duplicated genes, as well as genes near Helitron transposons, is
activated in Attebmutants. A number of γ-irradiation-inducible genes
show increased expression in Atteb mutants and are even further up-
regulated in teb/atr double mutants, suggesting that TEB and ATR
prevent the formation or accumulation of DSBs or other types of DNA
damage during DNA replication [47]. The results of this study suggest
that Atteb mutants activate the ATR-mediated DNA replication
checkpoint, which is then followed by a cell cycle arrest at the G2/M
transition. Furthermore, for about three-quarters of the genes
regulated by both, the difference in expression was more pronounced
in a Atteb/Atatr double mutant than in a Atteb mutant alone,
suggesting that the molecular phenotype of Atteb with regards to
gene expression is enhanced by Atatr [47].
3. Double strand breaks

DSBs occur naturally in all cells but also occur as a result of
exposure to exogenous factors, such as radiation or DNA damaging
substances.

To deal with DNA double strand breaks, plants possess two main
pathways: non-homologous end joining (NHEJ) and homologous
recombination (HR) [48–52]. NHEJ has been shown to be the
dominant repair mechanism in somatic cells of both plants and
animals [53,54], but it has been postulated that both pathways
compete with each other depending on the cell type, developmental
stage, phase of cell cycle and also on the type of DNA ends at a break
[55–59].

To recognize a DSB, it was shown that the MRE11/RAD50/NBS1
(MRN) (in yeast MRE11/RAD50/XRS2 [MRX]) complex can identify
and bind sites of DNA damage, unwind them and subsequently recruit
and activate ATM and ATR via NBS1, resulting in further signal
transduction in yeast and humans [60–64]. ATM then phosphorylates
many proteins involved in DNA repair, translation initiation, telomere
factors, replication initiation, and checkpoint control (reviewed in
[32]) to maintain genome stability. Although the MRN complex is
conserved between mammals and plants [65,66], it is still unclear
whether all functions are also conserved but the involvement of ATR
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and MRN in DNA damage signaling was recently shown in plants, too
[67].

To quantify the change in gene expression after DNA damage,
microarray studies were conducted after induction of double strand
breaks by γ-rays [20,22]. Table 1 shows up-regulated genes that are
involved in DNA damage repair and whether this up-regulation is
dependent on AtATM, AtATR or AtSOG1. It can be concluded from the
results that the kinase, AtATM, and the transcription factor, AtSOG1,
are especially needed for transcriptional changes after the induction
of double strand breaks.

However, there is not only up-regulation but also repression of
gene transcripts after the induction of double strand breaks. In
general, genes involved in basic cellular activities, cytoskeleton and
cell cycle progression are down-regulated; again, this is primarily
through the function of AtATM and is rarely through AtATR.

In total, genes involved in DNA metabolism, DNA repair,
replication, chromatin remodeling, and cell cycle control show higher
expression after treatment with double strand break inducers. Taken
together, the up-regulation and repression of these genes after DNA
damage are dependent on AtATM and AtSOG1, but only in rare cases is
it dependent on AtATR. Because the genes involved in HR are
especially transcriptionally up-regulated, we will concentrate on
this mechanism first.
3.1. Homologous recombination

After a DSB is recognized, the 5′ ends are resected to produce
single-stranded 3′ overhangs (Fig. 1C). In animals, many proteins
have been shown to be involved in this process, for example, the MRN
complex and CtIP in a complex with the tumor suppressors, BRCA1
and BARD1, in the first resection step; afterwards, more proteins, such
as a RECQ-helicase, are needed for a full resection [68]. In Arabidopsis,
a CtIP homolog exists with the name AtCOM1 [69]; additionally, there
are BRCA1 and BARD1 homologs [70–72]. Also, Arabidopsis has several
RECQ-helicases [73,74].

The single-stranded 3′ overhangs subsequently are coated with
RPA (replication protein A) (Fig. 1D). It is possible that ATR is also
recruited to the site of DNA damage via ATRIP (ATR interacting
protein), which binds to RPA-coated ssDNA. ATR is activated and can,
Table 1
List of selected DNA repair genes with a change in gene expression after genotoxic stress.
Sources: [22,39,10,20,41,201,211].

Gene Arabidopsis
locus

Change of
expression after
genotoxic stress

ATM
dependency

ATR
dependency

SOG1
dependency

BRCA1 At4g21070 +++ x – x
RAD51 At5g20850 +++ x – x
XRI1 At5g48720 +++ x – x
CYB1;1 At4g37490 +++ x – x
PARP1 At4g02390 +++ x – x
SYN2 At5g40840 +++ x – x
GMI1 At5g24280 +++ x – x
PARP2 At2g31320 ++ x – x
RAD17 At5g66130 ++ x – x
POL2A At1g08260 ++ x – x
RECQ3 At4g35740 ++ x – x
POLD4 At1g09815 ++ x – x
RPA70A At2g06510 + x – x
RPA70C At5g45400 + x – x
WEE1 At1g02970 + x – x

Listed are selected, up-regulated genes involved in DNA repair after induction of double
strand breaks. It has been shown that the up-regulation is dependent on the protein
kinases, ATM (ataxia telangiectasia mutated), and the transcription factor, SOG1
(suppressor of gamma response 1), but not on ATR (ataxia telangiectasia and Rad3
related). +++ = strong up-regulation, ++ =medium up-regulation, + = weak up-
regulation.
for example, arrest the cell cycle or block replication [75–78].
Eventually, RPA is replaced by RAD51, which facilitates strand invasion
into the homologous template. This replacement is dependent on the
BRCA1-A complex, which recruits RAD51 into the proximity of the DSB
(Fig. 1E). In humans members of this complex include BARD1, BRCA2,
and PALB2 (also known as FANCN; for an overview see [79]) among
others. RPA is actually a heterotrimeric complex, and in Arabidopsis,
there are five large RPA subunit homologs, as well as two annotated
examples each of themediumand small subunits [80]. BecauseRAD51 is
essential for the eukaryotic HR machinery, it is not surprising that a
homolog in Arabidopsis was detected and its transcription is highly
induced following γ-irradiation [22,81]. As in animals, there are six
other RAD51 paralogs with many different functions present in
Arabidopsis [81,82] and as far as they have been tested, only some of
them showed an up-regulation after genotoxic stress: AtRAD51B gets
slightly induced after cisplatin treatment or γ-irradiation [83]
and AtRAD51C and AtXRCC3 were up-regulated after treatment with
γ-irradiation [84]. For the remaining three paralogs (AtRAD51D,
AtDMC1 and AtXRCC2) no induction of gene expression after treatment
with genotoxins was observed, yet ([10] data available at http://jsp.
weigelworld.org/expviz/expviz.jsp).

After the ssDNA is loaded with RAD51, the filament can find
homologous sequences and invade themby displacing the second strand
of the template and generating a so-called “D-loop” (displacement loop)
(Fig. 1F). A DNA polymerase then elongates the invasive ssDNA by using
the sequence from the donor strand as template. The next step follows
one of the two HR models, either the double strand break repair (DSBR)
model or the synthesis-dependent strand-annealing (SDSA) model. In
the DSBR model, a double Holliday junction occurs and needs to be
resolved. Depending on the mechanism by which the double Holliday
junction is resolved, the result can either be a crossover or a gene
conversion; the result of the SDSA model is always a gene conversion
(topic reviewed in [54,85–87]).

In γ-irradiated plant cells, the gene that is most up-regulated is
AtBRCA1, which is induced an average of several hundred fold,
pointing to its importance in the repair of DSBs [22]. Interestingly, the
most prominent interaction partner of BRCA1, namely BARD1, is not
induced. This is surprising because all of the functions of mammalian
BRCA1 have thus far described it as existing as a heterodimer with
BARD1 [79]. AtRAD51, an essential protein for DSB repair via HR, is
also strongly up-regulated. It was recently demonstrated that another
putative plant BRCA1-A complex partner, BRCC36, which shows
deubiquitinating activity in humans [88,89], is duplicated in Arabi-
dopsis [90]. Both BRCC36 homologs in Arabidopsis show a weak up-
regulation after DSB induction via γ-irradiation, which indicates that
both homologs play a role in DNA damage repair [90]. Other up-
regulated genes include the AtPARP genes, which are involved in BER,
the AtRECQ3 helicase, the AtWEE1 checkpoint regulator, and two of
the five AtRPA70 (large subunit of RPA) homologs are also up-
regulated.

The single strand annealing (SSA) pathway can also be used to
repair a double strand break that has occurred in a repetitive sequence
[51]. In SSA, 3′ overhangs are produced by 5′ digestion, and the
overhangs can anneal to another repeat with complementary
sequence, resulting in a healed break. This process makes SSA a
non-conservative pathway because the genetic information between
the two repeats is lost.

3.2. Non-homologous end joining

NHEJ is non-conservative and often produces short deletions and
insertion because it involves joining broken ends back together
without regard for absolute DNA sequence fidelity. The end joining
pathway is also interesting because it is involved in T-DNA integration
during transformation [31,91–96]. Recent results indicate that at least
four different end joining pathways operate in plants [97]. However,
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only one of these pathways is known in detail. We will concentrate on
this well-characterized classical pathway here.

The first step in the classical NHEJ pathway is the recognition and
binding of the broken DNA ends by a KU70–KU80 heterodimer [98].
The KU proteins prevent large-scale degradation of the DNA ends and
bring the free DNA ends into close proximity [93,99]. In mammals, a
third protein, the DNA-dependent protein kinase catalytic subunit
(DNA-PKcs), binds to the KU heterodimers at both DNA ends;
however, this protein is absent in plants. The KU/DNA-PKcs complex
tethers the two ends of the DNA molecule [99,100]. KU may also
recruit other proteins involved in NHEJ repair to the DNA ends and
may interact with other proteins involved in DNA repair or DNA
damage signaling [101,102]. For example, mammalian KU70 interacts
with MRE11, a component of the MRN complex, which is involved in
DNA end processing in NHEJ and HR [103]. DNA ligase 4 (LIG4) and
XRCC4 (LIF1) catalyze the ligation of the DSB.

AtXRCC4 andAtLIG4 have been isolated and characterized, and itwas
shown that the proteins interact with each other and that the
transcription of LIG4 is induced by γ-irradiation [7,104]. Arabidopsis
homologs of yeast MRE11 and RAD50 have also been isolated [3,105].
Atmre11 mutant lines are hypersensitive to genotoxic agents and in
contrast to yeast, the telomeres in the Atmre11 mutant lines are longer
than those in wildtype plants. This suggests that plants possess an
additional alternative mechanism for telomere length maintenance
[106]. The mutant lines of Atmre11 in which the T-DNA disturbs the
strongly conserved 5′ region of the gene show severe developmental
defects and are sterile [106]. AtRAD50 mRNA is expressed in all cell
tissues analyzed; however, stronger levels were found in fast growing
cells, suchas cell-suspensioncultures, youngprimary roots andflowering
structures. Furthermore, AtRAD50 is essential in meiotic cells because
Atrad50 plants are sterile [3]. However, AtRAD50 does not show a change
in expression level in response to treatment with the radiomimetic
compound, methylmethane sufonate (MMS), or with the DSB-inducing
genotoxin, bleomycin, or the interstrand-crosslink inducing genotoxin,
MMC ([3], [10] data available at http://jsp.weigelworld.org/expviz/
expviz.jsp). Furthermore, AtRAD50 deficient cells are sensitive to
treatment with MMS [3]. Note that the expression level of a gene is not
the only important factor for its function inDNA repair because it couldbe
possible that essential DNA repair proteins are constitutively expressed in
plant tissues in an attempt to avoid damages at replication forks.

The AtMRE11 and AtNBS1 genes have been characterized, and it
was shown that AtNBS1 expression increases slightly 3 h after
irradiation with 100 Gy [107]. KU homologs have also been charac-
terized in A. thaliana. AtKU80 was shown to be able to interact with
AtKU70, and the KU dimer was shown to interact with DNA ends.
Mutant lines of AtKU80 are sensitive to DSB-inducing agents, such as
bleomycin [108,109]. Atku70 mutant lines are hypersensitive to DNA
damaging agents and it was found, that the telomeres are much
longer in Atku70 plants than in the wildtype plants [110]. The
expression levels of AtKU70 and AtKU80 are similar in all plant tissues
tested (roots, rosette, leaves, stalks, bract leaves, flowers and cell
culture), but their expression levels are lower under normal growth
conditions [109]. Exposure to the DSB-inducing genotoxin, bleomycin,
or the methylating agent, methylmethane sufonate (MMS), increased
the amounts of AtKU70 and AtKU80mRNAs more than threefold after
1 h [109]. The rapid transcriptional activation of KU genes appears to
be clearly associated with the generation of DSBs and with repair of
the DNA damage [109].

Interestingly, after abscisic acid (ABA) treatment, the expression
levels of the AtKU genes were decreased by roughly 50% after 6 h and
were restored to the control level after 8 h of treatment [111].
Furthermore, AtKU gene expression gradually decreased as ABA
concentration increased. Through screening of factors downstream of
ABA treatment, it was shown that down-regulation of AtKU
expression by ABA is potentially mediated by the phospholipase Dα
(PLDα) and p38-type mitogen-activated protein kinases MAPK6
cascading pathways and the ABA insensitive (ABI3 and ABI5)
transcription factors, which regulate various aspects of seed matura-
tion and gene expression [111,112]. In contrast, auxins and gibberelic
acid (GA) stimulate AtKU expression up to two fold. However, AtKU
repression by ABA is not antagonized by auxins and GA. [111]. Perhaps
the AtKU genes are regulated by different phytohormones to prevent
NHEJ in different stages of plant development. Interestingly, a change
in AtKU70 expression was found in a search of ATM-dependent
expression changes [20].

Following the recognition of a DSB, an additionally mechanism
must decide which repair pathway, HR or NHEJ, should be used. The
array results indicate that genes whose products are involved in the
HR pathway aremore likely to be up-regulated than the ones involved
in NHEJ [20]. The expression of HR proteins in plants is probably cell
cycle dependent, similar to DT40 chicken and mammalian cells [113–
117] and therefore requires a tight gene regulation. Unfortunately,
due to experimental limitations no detailed analysis on the influence
of the cell cycle on the DNA damage response has been performed in
plants to date.

4. Single strand damages

There are various endogenous and exogenous factors that cause
damage to only one strand of the genetic material. The UV component
of sunlight threatens all living beings on earth by damaging DNA. The
main damages resulting from UV light are pyrimidine dimers, which
can be divided into the major induced photoproducts: cyclobutane
pyrimidine dimers (CPD) and pyrimidine (6–4) pyrimidone dimers
((6–4) photoproducts; (6–4)PPs). CPDs are the major class of
pyrimidine dimers (75%) induced by UV damage [118]. Plants try to
avoid such lesions but must repair them when they occur. Avoidance
mechanisms include the accumulation of shielding compounds,
which are synthesized after UV-B irradiation, such as UV-absorbing
secondarymetabolites and free radical scavengers [119]. For example,
mutant Arabidopsis plants with increased levels of flavonoids and
other phenolic compounds exhibit tolerance to otherwise lethal UV-B
levels [120].

Endogenous factors are mostly reactive oxygen species (ROS),
which can be generated by toxic agents, such as Paraquat and
menadione experimentally [121]. However, the vast bulk of ROS are
generated by normal cellular metabolism [122,123]. Also in plants,
ROS are generated as by-products of the most essential energy-
generating processes: photosynthesis and respiration. Chloroplasts,
peroxisomes, and mitochondria are the main organellar ROS pro-
ducers [124–127]. Although there are several mechanisms to convert
these compounds into oxygen and water, this conversion is not 100%
efficient, and residual peroxides persist in the cell [127]. The common
ROS (reactive oxygen species) are O2•− (superoxide radical), OH•
(hydroxyl radical), and H2O2 (hydrogen peroxide). Every cell
experiences up to 105 spontaneous DNA lesions per day [128].

ROS induce a variety of DNA damages. Over one hundred different
DNA modifications caused by ROS have been identified in vitro [129].
First, there are several different oxidized bases, such as 8-oxoadenine,
8-oxoguanine and thymine glycol. Some base adducts can cause point
mutations. Also, the deoxyribose of the nucleotides can be oxidized by
ROS, which results in, e.g., deoxyribonolactone or phospoglycolate.
Furthermore, single strand breaks (SSBs) and DSBs can be induced by
ROS [130–132].

To research the repair of such lesions, ethyl methane sulfonate
(EMS) or MMS is often used to treat mutant lines that are deficient in
important DNA repair proteins in plants.

4.1. Base excision repair

Damaged bases are preferentially repaired by the base excision
repair (BER) pathway, which is widely conserved between bacteria,
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plants and humans. BER is a multistep process in which a protein
called DNA glycosylase initially removes the damaged base [133,134].
A couple of DNA glycosylases have been characterized in plants, e.g., a
3-methyladenine-specific DNA glycosylase [135]. This specific DNA
glycosylase showed the highest expression in tissues that are
undergoing rapid growth and cell division [136]. Biochemical and
genetic evidence has shown that BER in plants performs a key role in
epigenetic regulation through active DNA demethylation induced by
5-methylcytosine DNA glycosylases [137–139]. Methylation of genes
is an epigenetic modification which is associated with gene silencing
in eukaryotes. DNA methylation defects in mammals lead to
embryonic lethality and in plants they can lead to pleiotropic
morphological defects (reviewed in [140]). Although methylation is
in most cases a stable epigenetic mark, reduced levels were observed
during development in plants and mammals (reviewed in [141]). This
is because of the demethylation of genes, which is achieved by DNA
glycosylase activity, probably in combination with the BER pathway
[141–144].

The usual function of a DNA glycosylase is to excise damaged or
incorrect bases by generating an abasic (apurinic/apyrimidinic, AP)
site [145,146]. Bifunctional glycosylases have an additive AP lyase
activity and can further catalyze the cleavage of the sugar phosphate
chain to cut out the abasic residue. There are at least nine Arabidopsis
genes encoding bifunctional DNA glycosylases, and an AP lyase
activity has been demonstrated in vitro for seven of these (AtMMH,
AtNTH1, AtOGG1, AtDME, AtROS1, AtDML2 and AtDML3) [137–
139,147–150]. Only the expression of AtOGG1 and AtMMH was
analyzed in detail after treatmentwith γ-irradiation, H2O2 or Paraquat
and it was found out that they are not induced [151]. One explanation
for this finding could be that there is enough protein constitutively
produced to ensure the removal of 8-oxoG under oxidative conditions.
Alternatively, the regulation could be post-transcriptional [151].

After base excision, it is necessary to remove the AP site to
generate 3’ OH termini [152]. This reaction is performed by means of
AP endonucleases. The Arabidopsis genome encodes three AP
endonucleases, which show homology to AP endonuclease genes of
bacteria, yeast and animals (AtARP, AtAPE1L and AtAPE2) [153]. An
interesting finding was that AtAPE1L and AtAPE2 play an essential
role in embryonic development of plants. This role may reflect the
importance of DNA repair in the embryo, or it may represent a
function of AP endonucleases in the modification of DNA to activate
expression of specific genes [153].

After the AP endonuclease cuts the DNA backbone, the resulting
gap has to be filled in by a DNA polymerase, and the nick has to be
sealed by a complex that includes DNA ligase III and X-ray repair
cross-complementing group 1 (XRCC1). XRCC1 interacts with LIG III
and other BER proteins in mammalian cells to coordinate different
steps of the repair. The Arabidopsis genome encodes an XRCC1
homolog [154]. It has been proposed that AtXRCC1 plays an important
role in the repair of DSB in a presumably parallel NHEJ pathway to the
AtKU proteins [155]. Furthermore AtXRCC1 shows an ATM kinase-
dependent expression change after γ-irradiation, which confirms the
idea that AtXRCC1 has an important function in the DSB repair
pathway in plants [20]. The XRCC1 homolog in rice, OsXRCC1, has
been shown to bind to single and double stranded DNA and to interact
with PCNA in vivo [156].

There are two different mechanisms to fill in the resulting SSB. It
can be filled in by inserting a single nucleotide into the gap (short-
patch [SP] repair) or by DNA synthesis of several nucleotides (long
patch [LP] repair) [157]. In humans, the filling of the SP gap is
performed by Polymerase β [158]. Arabidopsis lacks any clear POL β
homolog, but it has been proposed that its role could be fulfilled by a
homolog of another polymerase, termed POL λ [159,160]. POL λ from
rice shows DNA polymerase activity, and its expression is associated
with cell proliferation in meristematic and meiotic tissues [161]. In LP
repair, the gap is filled by the replicative DNA POL δ or ε by creating a
flap-structure that is excised by the 5’ flap endonuclease, FEN1, before
ligation [162].

Another protein that has a role in BER and other strand break
events is PARP1 (poly [ADP-ribose] polymerase-1). PARP1 is a nuclear
protein that, when bound to DNA strand breaks, catalyzes the
formation of branched polymers of poly(ADP-ribose) using NAD+
as a substrate. Polymers of ADP-ribose are transferred to a limited
number of protein acceptors involved in modulating chromatin
architecture or in DNA metabolism [31,163,164]. In plants, PARP
activity has been demonstrated by the incorporation of labeled NAD+

into poly(ADP-ribose) in nuclei of rapidly dividing tissues, such as
root tips, germinating seedlings and tobacco cell suspensions (for
review see [165]).

Two PARP homologs are characterized in Arabidopsis: AtPARP1 and
AtPARP2 [166]. It was shown that mRNA of both PARP homologs in
Arabidopsis shows a massive accumulation induced by ionizing
radiation (IR); this accumulation is transient and dose-dependent,
and themRNA concentration returns to near basal levels 10–12 h after
irradiation [2]. Additionally, both genes showed a very high
expression rate when plants were treated with a mixture of
bleomycin and mitomycin C, though AtPARP1 shows a much higher
expression rate than AtPARP2 in roots and aerial plant parts ([10] data
available at http://jsp.weigelworld.org/expviz/expviz.jsp). This is a
clear hint that AtPARP1 and AtPARP2 play a role in the repair of
damage induced by ionizing radiation, as well as genotoxins.
Therefore, PARP1 or PARP2 mRNA could be a marker to investigate if
plants are under genotoxic or irradiation stress. A study in soybeans
gives suggests that PARP2 plays a general role in the response to
oxidative stress, while the PARP1 gene ismore specifically activated by
DNA strand breaks [2,167]. PARP1 has also been shown to be involved
in an alternative NHEJ pathway in mammals [168].

4.2. Photoreactivation

Other than bacteria, only plants, with their sessile live style that
makes them especially vulnerable to irradiation, harbor functional
photolyase genes in their genome. The photolyase/chryptochrome
family is commonly categorized as flavoproteins. These are proteins
that contain a flavin cofactor. Members maintain genetic integrity by
taking advantage of blue light to restore UV-induced photoproducts,
such as CPDs or (6–4)PP, to intact bases. Once the substrate is bound,
light is required to excite the FADH− either directly or via energy
transfer. The photoexcited flavin (FADH-) transfers an electron to the
CPD, the two CPD bonds split and the electron returns to the flavin.

A. thaliana contains two kinds of photolyases that are specific for
photoreactivation of either CPDs or (6–4)PPs [169–172].

There are two specific photolyases for CPD reversal encoded in the
Arabidopsis genome: photolyase 1 (PHR1) and photolyase 2 (PHR2).
A. Batschauer's group showed that expression of the photolyase,
SaPHR1, from Sinapis alba is light induced [173]. PHR1 expression in
Arabidopsis is also controlled by light [174]. Recently, it was shown
that there is a link between photomorphogenesis and DNA repair via
light induction of the PHR1 photolyase gene by the elongated
hypocotyl 5 (AtHY5) and HY5-homolog (AtHYH) transcription
factors. In contrast, the negative regulators of photomorphogenesis,
de-etioleated 1 (DET1) and constitutive photomorphogenic 1
(AtCOP1), repress AtPHR1 and AtUVR3 gene expression in darkness
[175]. Interestingly, in rice, PHR1 expression is not restricted to
dividing cells and can also be detected in mature tissues [176]. The
results of that study indicate that BER and NER correlate with
proliferating cells, while photoreactivation also protects post-mitotic
cells [176]. The Arabidopsis CPD photolyase protein, PHR1, is most
abundant in floral tissues with intermediate levels present in leaf
tissue and very low levels evident in roots; it is present only at low
levels in young, 7-day-old seedlings and increases between 7 and
14 days before declining in the leaves of mature plants [174].

http://jsp.weigelworld.org/expviz/expviz.jsp
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(6–4)PPs are removed by another photolyase enzyme, AtUVR3
[172]. The Arabidopsis (6–4)PP photolyase showed that this protein
has a very similar tissue distribution to that of the CPD photolyases.
The (6–4)PP photolyase was detected in all tissues except for the roots
with the highest levels detected in siliques [174], and it was present at
all leaf ages examined [174].

In rice, the sensitivity to UV-B radiation varies among cultivars
[177]. It was shown that the capacity to repair CPDs in UV-resistant
rice is significantly higher than that in UV-sensitive rice and that this
is due to an alteration of CPD photolyase activity resulting from
mutations in the CPD photolyase gene [178–180]. In contrast to the
(6–4)PP photorepair activity, which is constitutively active in
Arabidopsis seedlings, the CPD photorepair requires preceding
exposure of the seedlings to visible light for optimal expression
[181]. The differential regulation of the expression of the (6–4)PP
photolyase versus the CPD photolyase indicates that the two lesions
are photoreactivated via two independent pathways.

Depletion of photolyase activity in Arabidopsis leads to incomplete
CPD photoreactivation and defects in root growth after irradiation
[170,172,174]. Conversely, an increase in CPD photolyase activity can
minimize the growth-inhibitory effect of UV-B in Arabidopsis and
Oryza sativa [182,183].

4.3. Nucleotide excision repair

Plants are equipped with genes for the nucleotide excision repair
(NER) pathway. This pathway belongs to the so-called “dark repair
pathways” as the proteins function independently from light.

NER involves recognition of especially bulky lesions that distort
the helix structure, incision on the damaged strand, excision of 25–32
oligonucleotides around the distortion containing oligonucleotides,
DNA synthesis and ligation [184,185]. There are two subpathways of
NER: the transcription-coupled repair (TCR) and the global genomic
repair (GGR) pathways. While GGR repairs DNA damage over the
entire genome, TCR only repairs the transcribed DNA strand in
expressed regions. The operators of the NER are called nucleotide
excision repair factors (NEFs). The functions and structures of the
involved genes and proteins are highly conserved between different
eukaryotes [186,187]. The damage detection factor in yeast for the
GGR is called NEF4 and consists of a heterodimer of RAD7 and RAD16.
In A. thaliana, there are a several RAD7 and RAD16 homologs encoded
in the genome (our own unpublished data and [188–190]). None of
these homologs are characterized so far. The yeast NEF1 complex
consists of RAD14, which could be another detector of DNA damages
because it shows a high affinity to UV damaged DNA [191], and the
endonuclease complex RAD1/RAD10. The ability to build a complex
with RAD14 is of paramount importance for the targeting of this
nuclease complex to lesion sites in vivo [192]. RAD23 and RAD4 form
the NEF2 complex [193]. The endonuclease RAD2 and the transcrip-
tion factor TFIIH of RNA Polymerase II make up the NEF3 complex
[194]. NEF1, NEF2 and NEF3 are essential for TCR. GGR needs NEF4 to
detect damages in nontranscribed regions. A number of proteins that
are homologous to NER proteins have been detected in the Arabidopsis
genome (for review, see [195]).

Analysis of TFIIH or its subunits indicates remarkable versatility.
TFIIH participates not only in NER but also in transcription by RNA
Polymerase II and possibly RNA Polymerase I, cell cycle control, and
regulation of nuclear receptor activity [196–199]. It has also been
implicated in the transcriptional response to DNA damage and
translation initiation [200,201]. In human cells, TFIIH is a complex
consisting of 10 required proteins, including XPB, XPD, p62, p52, p44,
p34 and p8 [202,203]. There are different TFIIH subunits involved in
NER that have been characterized, such as AtXPB1, AtXPB2, AtXPD and
p44 (AtGTF2H2 and AtXPD) [204–208]. AtXPD (also known as
AtUVH6) appears to be expressed at low levels in all tissues, as
would be expected for a gene required for general transcription [207].
A comparison between the 5′ UTRs of AtXPB1 and AtXPB2 in the Col-
0 ecotype detected significant differences, but both 5′ UTRs contain
putative TATA boxes which have the capacity do drive constitutive
gene expression of both genes. AtXPB1 and AtXPB2 are probably not
induced by UV-B-induced DNA damage [205]. The promoter region of
the Arabidopsis p44 homolog, AtGTF2H2, and AtXPD contain multiple
cis-elements, including ACGT, ACCTA, H-box, myeloblastosis (Myb),
Myb recognition element (MRE), SET binding factor 1 (SBF-1) and TCA
[14]. These promoter elements have previously been shown to be
involved in light regulation or stress responses. [14,209–213]. While
Vornarx et al. saw no changes in the expression level of these genes
after UV irradiation, Molinier et al. did [15,208]. Evidently, the UV
dose, length and the time point for measurement are important for
detecting changes in expression of DNA repair genes.

Both endonucleases RAD1 and RAD10 that are involved in NEF1
have homologs encoded in the Arabidopsis genome, called AtRAD1
(or AtUVH1) and AtERCC1, respectively. Expression of AtRAD1 was
detected in all tissues with the highest level being found in flower
bud tissue and the lowest level in leaf tissue [214]. The Arabidopsis
RAD10 homolog, AtERCC1, is also expressed in all tissues [215] but
shows no expression changes following treatment with UV light [16].
The same result was found for the yeast RAD10 homolog, which is
also not inducible after treatment with 4-nitroquinoline 1-oxide
(4NQO). Human lung cancer cells also show no correlation between
mRNA expression of ERCC1 and chemosensitivity to cisplatin and
carboplatin [216,217]. In lily (Lilium longiflorum), it is interesting to
note that ERCC1 expression is up-regulated in the male germline
cells of plants. Exposure of pollen released from the anther to solar
UV-radiation and other environmental mutagens, as well as its
enhanced susceptibility to dehydration, could eventually lead to DNA
damage [218]. It is therefore possible that the up-regulation of the
ERCC1 homolog in lily generative cells indicates that DNA repair must
be very active in such cells to protect germline DNA from mutations
[219].

Additionally, a RAD23 homolog that makes up the yeast NEF2
complex along with RAD4 has been characterized in plants. In carrot
(Daucus carota), there exist two RAD23 homologs similar to
Arabidopsis [220]. Both of these are expressed in all organs and tissue
types, but transcript levels in carrot do not change up to 48 h after UV-
C irradiation. This is similar to the RAD23 human homologs [221] but
differs from the regulation of the yeast gene [222]. The caltractin-like
protein (CENTRIN2, AtCEN2) appears to be acting as an upstream
regulator of the NER pathway in Arabidopsis because several
components of the NER pathway were found to be transcriptionally
altered in the mutant. This appears to be a switch mechanism that is
relatively high in the hierarchy of DNA repair regulation [21]. HsCEN2
plays a role in the NER pathway, as well [223]. AtCEN2 contains four
EF-hand calcium-binding sites. The ‘EF-hand’ domain is an important
and highly conserved entity of the intracellular Ca2+ receptor
proteins that trigger cellular responses. AtCEN2 expression was
detected in different organs, such as leaves and roots and was
detected at a lower level in stems, flower buds and flowers [21].
Furthermore, the AtUVR3 photolyase was found to be down-regulated
in the untreated Atcen2 mutant, whereas genes involved either
directly or indirectly in double strand break repair (RAD51 and ATM)
were found to be up-regulated in the centrinmutant [21]. This finding
leads to the hypothesis that AtCEN2 may be a global player for a
switch mechanism between different DNA repair pathways.

5. E2F transcription factors

E2F/DP heterodimers are a family of transcription factors (TF) that
are highly conserved in plants and mammals. In Arabidopsis, six E2F
transcription factors have been identified [224]. These TF can be
divided into typical (E2Fa-E2Fc) and atypical (E2Fd-E2Ff) E2Fs. The
typical E2Fs contain one DNA-binding domain and one protein-



Table 2
List of DNA damage repair genes that possess at least one putative E2F binding site and
are upregulated in plants in which the E2Fa transcription factor is over expressed.
Sources: [195,196].

Gene Arabidopsis
locus

Putative
repair
pathway

Number of putative
E2F binding sites

E2Fa OE

dependent
expression

BRCA1 At4g21070 HR 1 +++
WEE1 At1g02970 Signaling n.f. +++
BARD1 At1g04020 HR 1 +++
PARP1 At4g02390 BER, HR n.f. ++
RAD51C At2g45280 HR 1 ++
UVR3 At3g15620 PR 1 ++
RAD17 At5g66130 Signaling 1 ++
PCNA2 At2g29570 PRR 1 ++
POLH (POL η) At5g44740 TLS 2 ++
RAD5A At5g22750 PRR, HR 1 +
PCNA1 At1g07370 PRR 2 +
ARP At2g41460 BER 3 +
RECQ4A At1g10930 HR, RF 1 +
PARP2 At2g31320 BER 1 +
RECQ4B At1g60930 HR 1 +
REV3 At1g67500 TLS 2 +
SOG1 At1g25580 Signaling 1 +
CDKB1;1 At3g54180 Signaling 1 +
BRCA2 (V) At5g01630 HR 1 +
RAD51B At2g28560 HR 2 +

Listed are selected genes that are involved in DNA damage repair signaling, homologous
recombination (HR), base excision repair (BER), photoreactivation (PR), postreplicative
repair (PRR) and translesion synthesis (TLS). Nearly all of these genes exhibit at least
one putative E2F binding site upstream of the ATG start codon. In two genes, no E2F
binding site has been found (n.f.). Additionally, the up-regulated expression of these
genes is classified as strong (+++), medium (++) or weak (+) in plants that over
expressed (OE) the E2Fa transcription factor.
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binding domain to bind its dimerization partner (DP) protein. The DP
protein contains another DNA-binding domain, which allows for a
stronger, high-affinity binding to promoters of genes that are
regulated by E2F transcription factors. The atypical E2Fs (also
known as DP-E2F-like [DEL] proteins) lack a dimerization domain to
bind to the DP protein; instead, they have a duplicated DNA-binding
domain, which allows them to bind to the same consensus element as
the typical E2F TFs. The binding region of E2Fs is TTTSSCGS (where S is
C or G) [225–229]. Interestingly, the atypical E2Fs possess no clear
transcriptional activation domain, and they are therefore classified as
transcriptional repressors [224,230].

The atypical E2Fe/DEL1 TF is involved as a specific inhibitor of
endoreduplication [227,231]. The role of endoreduplication in DNA
repair is still poorly understood but is a matter of discussion. One
function for endoreduplication has been postulated in DNA stress
tolerance [232,233]. It was speculated that if endoreduplicating cells
possess more copies of genes then they could better bypass
deleterious mutations. One target of the E2Fe/DEL1 TF is the
CCS52A2 gene, which encodes a CDH1-related activator of the
anaphase-promoting complex (APC) ubiquitin ligase. If E2Fe/DEL1 is
present, the APC activity is reduced and specific G2-M-cyclins that
drive mitosis accumulate. However, if E2Fe/DEL1 is repressed, the
APC, in cooperation with CCS52A2, destroys the mitotic cyclin
complexes and stimulates endoreduplication [227,230]. Therefore,
these plants show increased vitality following UV-B treatment
compared to treated wildtype plants, likely due to their endoredu-
plicational background.

Interestingly, it was also shown that DSBs induce endoreduplica-
tion and that this process is dependent on the previously mentioned
AtATM, AtATR, and AtSOG1 [234].

Recently, it was shown that the photolyase, AtPHR1, is also a target
gene of the E2Fe/DEL1 TF. It is well described that the E2Fe/DEL1 TF
represses the expression of AtPHR1, which leads to a lower repair rate
of CPDs in DNA [230]. Treatment with UV-B strongly down-regulates
the expression of E2Fe/DEL1, possibly due to preventing that cells with
damaged DNA enter the dividing process to avoid mutations. Thus
AtPHR1 expression is up-regulated to repair new damages and to
dispose and ensure the progression of the endocycle, which might
lead to a higher UV resistance in the plant [230].

In the last several years, some arrays were performed to uncover
genes that have an E2F TF binding site [10,228,229]. Surprisingly, a
large number of genes were found that display E2Fa-DPa (regular E2F
TF)-dependent expression, such as replication enzymes, origin
factors, and enzymes that are involved in chromatin structure, cell
cycle and DNA repair ([228,229] also see Table 2). Genes involved in
DNA repair are affected in all known DNA repair pathways (see
Table 2). All of the following genes which are involved in DNA damage
repair were up-regulated in plants that over-express the E2Fa-DPa
transcription factor: ARP, PARP1, PARP2which are involved in BER. The
UV repair UVR3 (6–4)PP photolyase, the NER putative ScRAD16
homolog, and the aforementioned RAD51C, BRCA1, BARD1 and SOG1
genes are up-regulated, too. In translesion synthesis and postreplica-
tive repair (PRR), which are active at stalled replication forks to
overcome lesions and ensure completion of replication, the catalytic
subunit of POL ζ, namely, REV3, PCNA1 and PCNA2 and the helicase,
RAD5A, are up-regulated in plants in which E2Fa TFs are over
expressed [229]. This finding emphasizes the universal and funda-
mental function of the E2F transcription factors, especially in the
regulation of DNA damage repair.

6. Conclusion

In this review, we summarized the current knowledge about gene
regulation in response to DNA damage in plants. We primarily
concentrated on genes involved in DNA repair. A large number of
these genes are induced by DNA damage, which indicates that
transcription is an important level of regulation for DNA damage
repair in plants. The ATM kinase and the SOG1 transcription factor
play important roles in this process. Additionally, the transcription
factor, E2Fa, is involved in the regulation of DNA repair genes. Some
genes, such as BRCA1, RAD51 or PARP1, are transcriptionally induced
by orders of magnitude in response to DNA damage. This finding gives
us the opportunity to screen for their up-regulation as an indication of
the accumulation of DNA damage in backgrounds with mutated genes
to understand the genes' possible role in genome maintenance (for
example, see [235]).

Nevertheless, many questions remain that should be addressed in
the future. An interesting issue that has barely been studied in plants
[31,58,59] is whether or not there are organ or cell specific responses
or whether specific states of the cell cycle are involved in the
regulation of genes in response to DNA damage. Another important
aspect of gene expression is the regulation of the protein level by
degradation in the 26S proteasome, which we did not cover in this
review. A very prominent protein in humans, p53, which is an
important cell cycle regulator, is regulated via polyubiquitination and
subsequent degradation. In the future, additional research on protein
levels should be performed. It will be very interesting to identify
target proteins of ubiquitin E3 ligases, which are responsible for the
specificity of the ubiquitin transfer. Nearly 1,300 genes in the
Arabidopsis genome are predicted to encode for E3 components
[236–238], and some of them are involved in DNA repair, such as
AtRAD5A or AtBRCA1 [239–241].

In light of these open questions, it appears that our current
knowledge on the regulation of genes in response to DNA damage is
just the tip of an iceberg of unknown complexity.
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