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ScienceDirect
Less than 5 years ago the CRISPR/Cas nuclease was first

introduced into eukaryotes, shortly becoming the most efficient

and widely used tool for genome engineering. For plants,

efforts were centred on obtaining heritable changes in most

transformable crop species by inducing mutations into open

reading frames of interest, via non-homologous end joining.

Now it is important to take the next steps and further develop

the technology to reach its full potential. For breeding, besides

using DNA-free editing and avoiding off target effects, it will be

desirable to apply the system for the mutation of regulatory

elements and for more complex genome rearrangements.

Targeting enzymatic activities, like transcriptional regulators or

DNA modifying enzymes, will be important for plant biology in

the future.
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Introduction
For more than twenty years it is has been known for plants

that by inducing unique double-strand breaks (DSBs) by

a site-specific endonuclease various genomic changes can

be achieved [1,2]. There are in principle two different

ways how a DSB can be repaired, either by homologous

recombination (HR) or by non-homologous end joining

(NHEJ). NHEJ by far outperforms HR in somatic plant

cells [3] HR can be applied to target predefined changes

into specific genomic sites [1]. Via NHEJ it is possible not

only to knockout genes [4] but also to excise sequences

from [5] or to insert sequences [2] into a genomic site (for

details see Figure 1).

A prerequisite for applying the technology genome-wide

is the ability to induce DSBs specifically at the sites of

interest. For this purpose, synthetic nucleases, namely
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zinc finger nucleases (ZFNs) and transcription activator-

like effector nucleases (TALENs), which allow the tar-

geting of most genomic sites, have been developed and

applied for a long period of time in plants (for reviews see

[6–8]). Although with the advent of ZFNs the basic

problem of targeting DSBs to specific site in the genome

was solved, the system revealed numerous drawbacks.

The construction of the enzymes is time consuming and

expensive and their specificity is limited, resulting in

DSB at genomic site that very similar but nor identical

to the target site. Thus, unwanted secondary, ‘off-target’

mutations were introduced regularly. After their intro-

duction TALENs outcompeted ZFNs in specificity as

well as in cost and time requirements. Still, a reasonable

effort was required and only a fraction of the plant

laboratory applied the technology for their purposes

However, only with the characterization of the Cas9

protein as an easily reprogrammable nuclease from the

CRISPR (Clustered Regularly Interspaced Short Palin-

dromic Repeats) system of the bacterium Streptococcus
pyogenes, has the field got a tool in hand that can be used

quickly and with ease by any molecular biology laboratory

[9��]. Thus, genome engineering has become routine.

The tool relies on a simple and efficient mechanism of

sequence-specific DSB induction. A short CRISPR RNA

(crRNA) directly binds to a 20-nt recognition site (RS) on

the DNA, the so-called protospacer. The sequence motif

‘NGG’ downstream of the protospacer (termed the pro-

tospacer-adjacent motif, PAM) is crucial for binding. A

second RNA, termed trans-activating crRNA (tracrRNA),

binds the crRNA, and the protein Cas9 is recruited to the

complex. Cas9 is an endonuclease that contains two

nuclease domains, the RuvC-like domain and the

HNH motif, each cleaving one of the two DNA strands

that are three base pairs upstream of the PAM. The

crRNA and the tracRNA have been fused to a unique

single guiding (sg) RNA, that makes application even

more easy (Figure 2).

After the demonstration of its applicability in plant biol-

ogy [10–12], the main focus of using the CRISPR/Cas

system became the production of NHEJ-mediated heri-

table mutations in a number of species, by inducing a

DSB within ORFs of genes of interest. An impressive

example of the power of the strategy for agriculture was

the production of powdery mildew resistant wheat plants,

by the knockout of all six alleles of the three MLO genes

present in the hexaploid species [13��]. It is far beyond

the scope of this review to give an overview about all crop

plants that could successfully be engineered by CRISPR/

Cas and the reader is referred to various current reviews
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DSB mediate genome engineering in plants: genomic change can be

achieved either by inducing homologous recombination (a) or by non-

homologous end joining (b)–(d). Gene targeting by homologous

recombination (HR) uses regions of homology (in red and orange) that

are present in the vector DNA as well as in the genomic sequence for

integration. Thus, larger DNA fragments (shown here in blue) can be

inserted or single amino acids can be exchanged in a controlled

predicable manner. In contrast the simplest way to apply NHEJ is to

use its feature that this repair reaction is often imprecise. If a break is

induced in an open reading frame due to deletion or insertion the

genomic information is often destroyed resulting in a null phenotype.

(b) Mutation induction by NHEJ, red: gene to be knocked out; As

NEHJ is by far the most prominent way of DSB repair it can also be

applied for (c) DNA integration by NHEJ blue: sequence to be

integrated into the genome or (d) induction of controlled DNA

deletions; blue: genomic sequence to be deleted.
on the topic [14–18]. Interestingly, such plants are not

considered as GMOs, at least in some countries. Here, I

will not focus on what has been achieved but on some

recent developments in applying the technology that will

become important for plant biology in the near future.
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3

5

5

protospa

Cas9

′

′

′

The CRISPR/Cas system of S. pyogenes to induce artificial DSBs: the Cas9

DNA via its RuvC and HNH domains. The binding specificity is defined by a

complementary to the respective target site. Via the protospacer-adjacent m

sequence contributes to the recognition site specificity.
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NHEJ mediated gene knock out: becoming
‘DNA-free’
Gene editing by NHEJ has been achieved by transfor-

mation of DNA expressing the nuclease into plant cells,

which is either transiently expressed or stably integrated.

If integrated, the foreign DNA can be eliminated by out-

segregation of the progeny of the modified plant [19].

Although, in either case, the product will not contain

transgenic DNA, depending on local laws, regulation

authorities in a number of countries may still classify

the plants as genetically modified organisms due to re-

combinant nucleic acids being involved in their produc-

tion [20]. Therefore, over the years, approaches have

been carried out to avoid DNA expressing the nuclease

in the process of site-specific DSB induction in plant cells.

There are two main strategies: either to use RNA viruses

as vectors or to directly transfer a functional nuclease into

plant cells.

The feasibility of the viral strategy was first demonstrated

using a Tobacco rattle virus (TRV)-based expression

system for indirect transient delivery of ZFNs into tobac-

co and petunia [21�]. More recently, this technology has

also been used for NHEJ-mediated gene editing using

the CRISPR/Cas system [22]. Alternatively, one can

directly transfer active enzyme molecules or their

mRNAs into plant cells, to achieve the desired mutations.

In principle different kinds of transfer can be envisaged as

there are microinjection, PEG transformation or electro-

poration as well as particle bombardment. Production of

heritable plant mutations was reported using either the

purified TALEN protein [23] or its mRNA [24]. In the

case of the CRISPR/Cas system, the active Cas9 nuclease

has to be formed by combining the protein with its
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 protein is responsible for the cleavage of both strands of the target

 stretch of 20 bases of the single guiding (sg) RNA which is

otif (PAM) the DNA is interacting with the Cas9 protein. Thus the PAM
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respective sgRNA(s). Transfecting such a complex into

protoplasts of various plant species, demonstrated the

applicability and feasibility of DNA-free technology

[25�].

NHEJ-mediated gene knock out: becoming
more precise
Off-target effects of synthetic nucleases, including Cas9,

have been of general concern over the years. For plants,

several reports exist stating that such effects can be found

with Cas9 [26], although the opposite has also been

reported [27]. There are different level to detect such

off target effects, obviously the determination of the

complete genomic sequence of the mutated plant is

the most reliable one [26] whereas other groups tested

only the sequence of sites with close homology to the

target [28]. Secondary sites can also by detected by

digesting purified genome DNA with the respective

purified nuclease and consecutive whole genome se-

quencing [29]. Besides selecting for non-redundant sites

for sgRNA construction, there are two recent technical

developments that drastically reduce off-target effects.

On the one hand, engineered Cas9s have been con-

structed, although not yet applied in plants, that are more

specific in their sequence recognition than the natural

enzyme. The most prominent example is SpCas9-HF1,

harbouring alterations designed to reduce non-specific

DNA contacts while retaining on-target activities compa-

rable to wild-type SpCas9 [30]. On the other hand, Cas9

nuclease can be transformed into a nickase by a point

mutation in the active centre of either the RuvC or the

HNH domain (Figure 2). By the use of two sgRNAs,

paired single strand breaks can be induced at a specific

distance in both strands, enhancing the specific recogni-

tion from 20 to 40 bps [31]. This approach has been

applied in plants [32], where it could be demonstrated

that off-target effects were minimized [28]. A recent

study showed that the paired nickase approach can effi-

ciently be used for inducing mutations in both intragenic

and intergenic regions, as well as in heterochromatin, in

Arabidopsis [33�].

New and more complex targets for genome
engineering
Besides modifying ORFs and genes using NHEJ-induced

mutations, Cas9 is also a valuable tool for modifying

genomic sequences involved in regulation (Figure 3)

[34]. Although such applications in plants are only just

beginning to be used [35], in mammals, the setup of a

multiplexed editing regulatory assay enabled for the

screening of thousands of mutations in terms of their

influence on gene activity. Therefore, new regulatory

elements can be identified that do not have typical

features [36,37]. For breeding applications, the introduc-

tion of new SNPs at defined genomic positions by NHEJ-

mediated DSB repair to modulate expression of factors
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influencing yield quality and quantity, might also be

attractive.

By inducing two genomic DSBs in close proximity, it has

become routine to induce smaller deletions that can be

transferred to the next generation in plants [38,39]. How-

ever, although possible, there have not yet been any

reports on the production of larger heritable inversions

[40,41] nor reciprocal chromosomal translocations [42], by

the use of synthetic nucleases. For breeding, reversion of

inversions on homologues might help with the transfer of

traits from wild relatives to elite cultivars. Inducing

translocations could potentially enable new linkages be-

tween beneficial traits to be made or to break undesired

linkages.

In meiosis natural induction of DSBs by the Spo11

protein results in at least one crossover (CO) per parental

homologue pair. Thus, linkages between traits that are

present only in one or the other parental chromosome can

be broken. The plant breeder uses this phenomenon to

single out adverse traits or combine attractive traits in

specific cultivates. However, CO are not distributed

evenly over chromosomes and many traits cannot be

unlinked [43]. Therefore it would be highly desirable

to induce CO by artificial DSB induction between homo-

logues at predefined sites in plants. In yeast, this has been

achieved in different ways: In a pioneering study already

more than 10 years ago, a specific DNA binding domain

was fused to the Spo11 protein, to directly enhance

meiotic recombination [44��]. Furthermore, mitotic cross-

overs could also recently be obtained by Cas9-induced

HR [45].

HR-mediated gene targeting: still room for
improvements
Induction of DSB increases integration of a DNA carrying

homologies to the target locus by orders of magnitude in

plants [1]. A number of recent papers have been pub-

lished that demonstrate that via Cas9-mediated induction

of DSBs HR-mediated gene targeting frequencies can

enhanced drastically (for a recent review see [46]). Nev-

ertheless, whereas mutation induction by NHEJ reaches

efficiencies of sometimes close to 100% of plants in the

progeny, most reports indicate a HR efficiency merely in

the low percentage range. Thus, the amount of work that

has to be invested to achieve HR-mediated gene target-

ing is at least one to two orders of magnitude higher than

with NHEJ, which is especially disappointing for crop

plants with low transformation efficiencies. The reason

for this is that in somatic plant cells, NHEJ is much more

efficient than HR in repairing DSBs [47]. Various

approaches have been carried out to try to improve this

situation, for instance by excising an integrated vector out

of the genome [19,48�,49]. In another promising approach

the vector DNA transformed into plant cells that carries

outside the homologous region a geminiviral replicon and
Current Opinion in Plant Biology 2017, 36:1–8
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Figure 3
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Multiple types of genomic targets for Cas9 nuclease-mediated NHEJ and their applications (apl.). The classical nuclease is depicted with a single

guiding RNA. The HNH and RuvC domains that are responsible for inducing single strand breaks in one or the other DNA strand — resulting in a

DSB — are also shown. Applications useful for plant biology, as well as plant breeding, are listed. Besides the knockout of proteins or RNA

coding genes, regulatory elements can be manipulated by the technology. On the other side, multiple breaks in one or several chromosomes can

be used to induce genomic rearrangements like deletions, inversions or translocations, that are also attractive for changing genetic linkages in

breeding (blue: Cas9 protein, black: sgRNA; grey bar: DNA; RNAcdDNA: structural RNA coding DNA).
the replication factor Rep. Thus replication of the vector

DNA is initiated. The resulting increase in copy number

of the target vector as well as the induction of a replica-

tion-prone status of the cell by the geminiviral Rep

protein both contribute to enhanced DSB-induced tar-

geting frequencies [50�,51]. Additionally, inhibition of

NHEJ, for example, by knocking out Ligase 4 [52] can

help to improve GT frequencies. The transfection of

DNA oligonucleotides [53,54] has also been applied

successfully for DSB-induced gene correction in plants.

Despite all these efforts, it is feasible but still laborious to

modify genomes of plants via DSB-induced HR, espe-

cially if transformation efficiencies of the respective spe-

cies is low. It will be interesting to see whether the

situation can be further improved by the development

of more sophisticated technologies in the near future.

In principle DSB induction can also be used for site-

specific integration via NHEJ [2]. Recently such a

CRISPR-Cas-mediated transgene knock in was reported

[55�] with an efficiency, which makes this approach a

valuable alternative to gene targeting via HR (see also

Figure 1c). The authors targeted an exon containing

construct into an intronic region. Thus resulting small

changes introduced by NHEJ during the intron-knock in

are unlikely to affect subsequent mRNA splicing or

expression of the knocked in exon. Using this approach,
Current Opinion in Plant Biology 2017, 36:1–8 
a 1.6 kb gene construct was introduced with an efficiency

of 2.2%. However, one has to keep in mind that integra-

tion of the fragment might also occur elsewhere in the

genome. Therefore, the obtained recombinant lines have

to be analyzed whether they contain extra copies of the

insert at ectopic sites.

Using dCas9 fusion for transcriptional
regulation and in vivo labelling
Converting Cas9 to a DNA binding protein [dead or

dCas9], eliminating its nuclease activity by two simulta-

neous point mutation in the active centre of both the

RuvC and the HNH domain (Figure 2), and combining it

by translational fusion with an enzymatic function,

enables the development of a tool that can selectively

target any kind of activity to any specific genomic se-

quence (Figure 4). The respective enzymatic domain can

either be fused directly to Cas9 [56] or indirectly to an

RNA binding protein, that is able to interact with an

aptamer sequence integrated within the respective

sgRNA [57]. Thus, the CRISPR/Cas system can be used

to switch on and off genes, which can be achieved directly

by blocking accessibility or recruiting relevant factors, or

indirectly by modification of the histone code or by

changes in DNA methylation at specific genomic sites

[58]. Histone modification can be achieved by fusing the

catalytic core of the human acetyltransferase p300 to
www.sciencedirect.com



Applying CRISPR/Cas for genome engineering in plants Puchta 5

Figure 4
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Multiple applications of dCas9 fusions for histone and DNA modifications. The dead dCas9 as DNA-binding domain, the specificity of which is

defined by its sgRNA fused to another protein domain with activity to modify the respective target molecule. Thus, activation or repression of

transcription via epigenetic change, for example, by covalent modification of histone H3 or by methylation of cytosine or demethylation of m-cytosine,

can be achieved. By deamination of cytosine a uracil arises, which — if not eliminated by DNA repair before — will pair in the next round of DNA

replication to an adenine instead of guanine, leading to a point mutation in one sister cell (blue: dCas9 protein, black: sgRNA; grey bar: DNA).
dCas9. The fusion protein catalyzes acetylation of histone

H3 lysine 27 at its target sites, leading to robust transcrip-

tional activation of target genes [59]. Fusions of dCas9 to

the Krüppel-associated box (KRAB) repressor (dCas9-

KRAB) can silence target gene expression by inducing

highly specific induction of H3K9 trimethylation

(H3K9me3), at the target region [60]. Alternatively, gene

activation can also be achieved via cytosine demethyla-

tion following fusion of the dCas9 to the catalytic domain

of the mammalian Ten-Eleven Translocation (TET)

dioxygenase1 (TET1CD) [61]. In contrast to mammals

in plants the ROS1 glyosylase-lyase family is involved in

demethylation [62] making this enzyme class also a good

candidate for fusions. Whereas DNA methylation can be

induced to shut down gene expression by fusing dCas9 to

the DNA methyltransferase DNMT3A [63]. dCas9-me-

diated regulation of gene expression has rarely been used

for plants at present [64�,65], however one does not have

to be a prophet to foresee that it will become more widely

applied in the future. Similarly, direct or RNA-mediated

fusion of dCas9 with fluorescent marker proteins can be

used to visualize genomic loci, in living cells, to investi-

gate chromosome dynamics [66,67], a technique that will

also be attractive for plant cytology.

Introducing mutations without breaking DNA
Very recently, a new approach to genome editing that

enables the direct, irreversible programmed conversion of

one target DNA base into another, called ‘base editing’,
www.sciencedirect.com 
was developed for mammalian cells [68,69]. dCas9 was

fused to cytidine deaminase enzyme, mediating the di-

rect conversion of cytidine to uridine (Figure 2) so that

following replication of the duplex a C/G bp was changed

into a T/A bp, in one of the daughter cells Thus, without

DSB induction, point mutations within a window of

5 nucleotides can be introduced. However, as Uracil is

also incorporated into DNA by mistake or can naturally

arise by deamination of cytosine, relatively efficient DNA

repair mechanisms exist in eukaryotic cells that eliminate

uracil, which ultimately have to be blocked in order to

obtain reasonable mutation frequencies. It will be inter-

esting to see whether such a relative sophisticated tech-

nology is also attractive for application in plants.

New game players: Cas9 orthologues and
Cpf1
Different kinds of CRISPR/Cas systems can be found in

different bacteria. Only type II is characterized by an

active nuclease entity consisting of a single protein (Cas9)

and the crRNA-tracrRNA complex [70]. Multiple ortho-

logues of Cas9 in bacteria are attractive for use in genome

engineering, as they differ in their protospacer adjacent

motif (PAM) sequences, which limits the flexibility of

sequence recognition. Nucleases from Staphylococcus au-
reus (SauCas9) and Streptococcus thermophilus (Sth1Cas9)

have been used recently, at least as efficiently as the S.
pyogenes Cas9 (SpyCas9), for genome engineering in

plants [71–73]. Importantly, it could be demonstrated
Current Opinion in Plant Biology 2017, 36:1–8



6 Genome studies and molecular genetics 2017
that SauCas9 and SpyCas9, and their specific sgRNA, do

not interfere with each other in plant cells [71]. As a result,

it is possible to apply these enzymes simultaneously in

one plant cell to target differently modified Cas9 ortho-

logues to different sites in the same genome. Thus, at the

same time DSBs and SSB can be induced in a genome, or

transcription of different sets of gene can be switched on

and off simultaneously in the same cell. In the long run,

building up synthetic entities by the use of the CRISPR/

Cas will become possible for plants (for review see [74]).

Besides the classical Cas9 orthologues, the nuclease Cpf1

was recently characterized. This enzyme produces 4 bp

overhangs [75��,76], as opposed to the blunt ends the

classical Cas9 orthologues generate, making it an excep-

tionally attractive alternative when wishing to achieve

more complex genome rearrangements. With sticking

ends the efficiency genomic insertions into a complemen-

tary site in the genome as well deletion formation might

be enhanced in comparison to blunt ends. Interestingly,

recent studies with Cpf1 in the human genome, demon-

strate drastically fewer off target effects than for classical

Cas9 nucleases [77,78]. Consequently, Cpf1 proves ex-

tremely attractive for use in plant biology and its success-

ful application will only be a matter of time.

Conclusions
The very recent discovery of bacterial enzymes of the

C2c2 class [79], opens up opportunities for site-specific

RNA manipulations, an area that has hardly addressable

till now for eukaryotes. In general, the development of

the CRISPR/Cas field is so fast, that it is hard to foresee all

the potential applications, even in the near future. How-

ever, without doubt, due to CRISPR/Cas, molecular

biology has never been more exciting than now.
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