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Abstract

Key message This review summarises the recent pro-

gress in DSB-induced gene targeting by homologous

recombination in plants. We are getting closer to effi-

ciently inserting genes or precisely exchanging single

amino acids.

Abstract Although the basic features of double-strand

break (DSB)-induced genome engineering were established

more than 20 years ago, only in recent years has the

technique come into the focus of plant biologists. Today,

most scientists apply the recently discovered CRISPR/Cas

system for inducing site-specific DSBs in genes of interest

to obtain mutations by non-homologous end joining

(NHEJ), which is the prevailing and often imprecise

mechanism of DSB repair in somatic plant cells. However,

predefined changes like the site-specific insertion of for-

eign genes or an exchange of single amino acids can be

achieved by DSB-induced homologous recombination

(HR). Although DSB induction drastically enhances the

efficiency of HR, the efficiency is still about two orders of

magnitude lower than that of NHEJ. Therefore, significant

effort have been put forth to improve DSB-induced HR

based technologies. This review summarises the previous

studies as well as discusses the most recent developments

in using the CRISPR/Cas system to improve these pro-

cesses for plants.

Keywords Double-strand break repair � Homologous

recombination � Non-homologous end joining � Synthetic
nucleases � Targeted mutagenesis � Gene targeting

Introduction

To specifically alter the genetic sequence of a plant has

been a primary goal in plant biology, as targeted gene

inactivation is crucial to understanding how genotypes

influence phenotypes. Underlying most genetic manipula-

tions is the induction of a sequence-specific DSB induced

in the target gene, which activates repair mechanisms.

Naturally, DSBs occur due to a variety of reasons: they can

result from exposure to exogenous factors such as gamma

radiation or from agents that either induces DNA damage

directly or indirectly by enhancing cellular processes that

produce free radicals. During meiosis, DSBs are induced in

a programmed way to facilitate meiotic recombination, and

thus, increasing genetic variability.

The basic principle of genome engineering is to induce

DSBs on purpose via the use of nucleases at specific sites

to initiate repair reactions that result in a more or less

specific genomic change. In principle, plants have two

major pathways of DSB repair: NHEJ and HR. The pre-

dominant pathway in the somatic cells of higher plants is

NHEJ, however, when homologous sequences are available

either on the sister chromatids or close to the break site

(e.g., in tandem duplications) DSB repair can occur via HR

(Puchta 2005). Multiple reviews on the use of NHEJ as the

means for genome engineering using synthetic nucleases

have been published recently (e.g., Voytas 2013; Puchta

and Fauser 2014; Schaeffer and Nakata 2015; Weeks et al.

2015; Schiml and Puchta 2016), and more reviews are

included in this special issue. The purpose of this review is
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to focus on HR-based DSB-induced genome engineering in

plants. First, the basic mechanism of DSB-induced HR will

be discussed, and second, we will highlight the different

approaches that have been used primarily with synthetic

nucleases for genome engineering in plants.

The basic mechanisms of homologous
recombination

HR occurs in somatic cells to prevent genetic errors and in

meiotic cells to enable the equal distribution of the parental

chromosomes and genetic exchange between homologues.

HR is subdivided into conservative and non-conservative

pathways. Frequently, only conservative mechanisms are

considered as ‘classical’ HR, because in non-conservative

mechanisms of HR, genetic material is lost. A prominent

non-conservative mechanism is the so-called single-strand

annealing (SSA) pathway that depends on homologous

repetitive sequences that are arranged in close proximity

(Fig. 1). Tandemly arranged homologous sequences are

often found in plant genomes due to gene duplications.

SSA can be almost as efficient as NHEJ: up to one out of

three DSBs is repaired via SSA within repeated sequence

regions of plant genomes (Siebert and Puchta 2002). After

DSB induction, single-strand resections on both break sites

take place until homologous sequences can anneal.

Overhanging single-strands are degraded or gaps are filled,

which is followed by ligations. This mechanism results in

deletions, as the sequence stretch between both homologies

is always lost.

Unlike the non-conservative SSA pathway, the conser-

vative mechanisms of HR do not result in sequence loss.

The two most prominent subpathways, which have com-

mon first steps in their reactions, are the synthesis-depen-

dent strand annealing (SDSA) and the double-strand break

repair (DSBR) pathways (Nassif et al. 1994; Szostak et al.

1983). Whereas, the DSBR is a prominent mechanism in

meiotic recombination in plants (see Osman et al. 2011)

that can result in crossover (CO) events between homo-

logues, experimental evidence indicates that in somatic

plant cells almost all DSBs are repaired via the SDSA

mechanism (Puchta 1998). As shown in Fig. 2, this

mechanism does not result in crossovers. The basic prin-

ciple of this process is that after induction of a DSB a

homologous sequence is copied into the break site, leading

to no loss of sequence information. After a DSB occurs,

both break ends are resected to expose the 30 ends of the

single-stranded DNA. One 30 end invades a homologous

sequence by displacing one of the strands along the way,

producing the so-called displacement loop (D-loop). The

invading strand is then elongated by copying the sequence

information from the intact donor DNA. Later, the elon-

gated single-strand is released from the D-loop, and then,

can reanneal with the homologous single-stranded DNA on

the opposite side of the break site. Thus, only non-cross-

over events occur. The SDSA pathway seems to be the

predominant pathway responsible for conservative HR in

somatic plant cells, as it is beneficial for genome stability.

COs between the multiple repetitive sequences in plant

genomes can lead to di- or acentric chromosomes.

Strategies developed to perform HR-based DSB-induced

genome engineering in plants should, therefore, be devel-

oped along the lines of the SSA or SDSA pathway models.

Genome engineering in plants

Loss of function mutants can be created by using sequence-

specific nucleases to induce DSBs at the target site in the

coding sequences and their imprecise repair via NHEJ.

Precise repair due to the induction of HR events, however,

can alter plant genomes in a completely predictable way. In

general, there are two different types of HR reactions that

can be induced by a single DSB that are of interest for

genome engineering. If the break is induced between

directly repeated sequence motives, a controlled deletion

can be achieved (Siebert and Puchta 2002). However, if a

DSB is induced in a genomic locus in the presence of an

extrachromosomal homologous repair template, the
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Fig. 1 Single-strand annealing (SSA) pathway of homologous

recombination (HR). After DSB induction, the 50 ends of the break

side are resected to produce single-stranded 30 overhangs. Due to

homologies within the ssDNA regions, the two strands can directly

anneal. The overhanging ends are either trimmed or single-stranded

gaps are filled via DNA synthesis
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technique is referred to as gene targeting (GT) (Puchta

et al. 1996). GT is of great interest because, on the one

hand, new genes can be integrated into a specific target

locus, and on the other hand, it is also possible to introduce

subtle changes of single amino acids into a specific ORF.

DSB-induced gene targeting has been the focus of interest

in recent decades. A series of different approaches have

been developed, and over time, different types of increas-

ingly sophisticated synthetic nucleases have been applied.

In the following paragraphs, we will discuss different

approaches that have been taken over the years.

GT in plants: the early days

In bacteria or yeast cells, DNA integration takes place

mostly via HR, and therefore, GT can easily be achieved

using homologous sequences. As HR is not the main repair

mechanism in higher organisms, such as plants, sponta-

neous ‘‘classical’’ GT events are quite hard to obtain, as

they are so rare.

The first approaches to achieve ‘‘classical’’ GT were via

simply applying a homologous sequence and screening for

spontaneous GT recombination events (Fig. 3). The initial

studies on GT events in higher eukaryotes were performed

in mouse embryonic stem cells in 1987 (Doetschman et al.

1987; Thomas and Capecchi 1987), but it took longer to

demonstrate that genes can be targeted in plant cells. In

1988, Paszkowski et al. (1988) demonstrated for the first

time that GT is possible in plant cells, namely, in tobacco

protoplasts. In these experiments, they transfected tobacco

cells carrying copies of a partial, non-functional kanamy-

cin-resistance gene with plasmids containing the missing

part of the gene. Gene correction due to GT events was

measured based on kanamycin-resistance. Two years later,

Offringa et al. (1990) showed that GT is also possible using

a T-DNA instead of plasmids. A third possibility is to apply

GT donor sequences using chimeric RNA/DNA oligonu-

cleotides. The DNA component of these chimeric oligos

contains a ‘‘mutator’’ region of five nucleotides homolo-

gous to the target sequence that can contain one or two

mismatches to the target, and therefore, can be introduced

into the target site via repair mechanisms. The use of

chimeric oligos to alter target genes has been reported in

maize, tobacco, rice and wheat (Beetham et al. 1999; Dong

et al. 2006; Okuzaki and Toriyama 2004; Zhu et al. 1999,

2000). In these studies and in some subsequent ones, the

measured GT frequencies were rather low, with only one

event per 104 to 105 targeting attempts, because the donor

and the target sequences interact more or less randomly

(for reviews see Puchta 2002; Puchta and Fauser 2013).

Using site-specific synthetic nucleases, a tool was in

hand to induce DSBs at the target locus, thus increasing GT

frequencies. The first experiments in plants were performed

using the meganuclease I-SceI (Puchta et al. 1993). HR-

mediated GT was shown to work in tobacco cells using an

artificial target site. A particular DSB was induced in a

stably transformed transgene with a transiently expressed

I-SceI cassette and the break was subsequently repaired via

HR using a T-DNA harbouring homologous sequences to

the target sequence. Therefore, it was shown for the first

time in plants that HR frequency can be increased by up to

two orders of magnitude (Puchta et al. 1996).
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Fig. 2 Synthesis-dependent strand annealing (SDSA) pathway of

homologous recombination (HR). After DSB induction, free 30

overhangs are produced that can invade a second homologous dsDNA

molecule. The invading strand forms a D-loop structure and repair

synthesis is initiated using the homologous dsDNA as a template. The

elongated 30 end can reanneal with the second free 30 end at the break

site. The resulting dsDNA still contains two gaps on each side that are

filled by DNA synthesis. Thus, genetic information is only copied

from the homologous sequence into the DSB site, and the donor

sequences stays unaltered. This leads only to non-crossover events
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GT in plants using synthetic nucleases

Over the years, new types of site-specific nucleases became

available and replaced meganucleases for use in genome

engineering. Meganucleases are of limited applicability, as

they have only one particular recognition sequence, making

the knockout of natural genes nearly impossible. Manipu-

lation of the enzymes’ binding site has to be performed

without harming its endonuclease activity, and this is diffi-

cult given that both activities are combined in one domain.

New sequence-specific nucleases were developed that

combined a DNA-binding domain with a separate nuclease

domain derived from the type IIS enzyme FokI. One of these

is the so-called zinc-finger nuclease (ZFN) that operates as a

dimer. In 2005, GTwas demonstrated with high efficiency in

tobacco protoplasts by inducing a DSB with a ZFN in an

artificial locus (Wright et al. 2005). Here, two disrupted

marker genes with recognition sites for the ZFN were

restored by GT. After transformation with both the nuclease

and the donor template with the correct marker sequences,

GT frequencies of up to 10 % in selected lines were mea-

sured. This experiment showed that by using customizable

synthetic nucleases, GT with higher frequencies and at

desired loci was feasible in plants. Improved GT frequencies

were also achieved in maize using ZFNs. Here, a heterolo-

gous donor molecule was used, expressing an herbicide

resistance gene in the target locus when integrated by GT.

The GT events were demonstrated in 20 % of the selected

lines (Shukla et al. 2009). Another approach using ZFNs for

GT was performed in tobacco cells, which also inserted

resistance cassettes into the target genes, leading to GT

efficiencies of up to 4 % (Townsend et al. 2009). Addition-

ally, GT was found to be possible in Arabidopsis. Plants

expressing a ZFN targeting the protoporphyrinogen oxidase

(PPO) gene were transformed with a T-DNA harbouring an

incomplete PPO gene, making the enzyme butafenacil-her-

bicide insensitive. Based on this analysis, GT frequencies of

up to 3.1 9 10-3 per transformation event could be detected

(Pater et al. 2013).

As ZFNs are relatively difficult to customise for a specific

sequence, multiple studies using the, at that time, newly

developed transcription activator-like effector nucleases

(TALENs) were initiated a few years later. This class of

sequence-specific nucleases is, like the ZFNs, composed of a

DNA-binding domain and a FokI nuclease domain that act as

dimers (Miller et al. 2011).With TALENs, it was possible to

modify the endogenous genes for many different plant spe-

cies, such as Brachypodium, rice, maize and tobacco, with

even higher frequencies than was possible with ZFNs

(Mahfouz et al. 2011; Shan et al. 2013; Zhang et al. 2013).

GT experiments using TALENs in tobacco protoplasts

showed that it is possible to alter the ALS gene with a donor

sequence differing by 6 bp to the original gene sequencewith

frequencies of up to 4 % (Zhang et al. 2013).

The most recent sequence-specific nuclease available for

targeted gene manipulation is the RNA-guided Cas9

nuclease derived from the bacterial CRISPR/Cas system

(clustered regularly interspaced short palindromic repeats/

CRISPR associated). A common factor with meganucle-

ases, ZFNs and TALENs is that the nuclease itself has to be

altered to target the desired sequence. Cas9 on the other

hand uses a guide RNA to direct the enzyme to the target

site. Altering the RNA to facilitate target recognition is

simple, as only 20 nts have to be exchanged whilst the

nuclease itself remains unmodified. Its simple structure

makes the RNA-guided Cas9 nuclease an extremely easily

applicable tool for genome manipulations. Targeted gene

insertion was shown to be effective in maize protoplasts via

LB RB

T-DNA Plasmid-DNA DNA-RNA Oligo with base exchange

Target-DNA

DNA Oligo

Fig. 3 Different templates to initiate ‘‘classical’’ gene targeting in

plants. T-DNAs, DNA oligonucleotides, DNA-plasmids or DNA–

RNA oligonucleotides can be used for GT. HR within the target site

using the flanking homologous regions (red, yellow) of the respective

donor sequence leads to the desired gene insertion or modification

(colour figure online)
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biolistic transformation using the Cas9-sgRNA system

(Svitashev et al. 2015). The donor DNA was located on the

same plasmid as the Cas9-sgRNA cassette. Three different

donor DNAs (one double-stranded vector DNA and two

single-stranded oligos) were tested in the alteration of the

ALS2 gene, which can be edited to result in sulfonylurea-

resistant plants. All experiments led to altered ALS2 genes,

showing that small single-stranded oligos are sufficient for

gene editing. Integration frequencies of up to 4.1 % were

achieved using the Cas9-sgRNA system, whilst parallel

approaches using the same donor template with a

meganuclease led to approximately 5 times fewer inte-

gration events. That single-stranded oligos in combination

with the CRISPR/Cas system are also able to precisely edit

crop plants was shown for flax (Linum usitatissimum)

plants (Sauer et al. 2016). The authors were able to create

herbicide resistance plants by introducing point mutations

in the EPSPS genes by applying the DNA-oligos in com-

bination with DSB induction via Cas9.

The general use of the Cas9-mediated GT approach was

also shown to work in soybean, where a resistance cassette

was integrated into the DD43 target site (Li et al. 2015).

In planta gene targeting

A sophisticated method to enhance GT events was estab-

lished in 2012 using the meganuclease I-SceI. Here, the

enzyme not only cuts within the target site but also within

the transgenic donor sequence. The donor in this case is

stably integrated into the genome, so that this system can

achieve GT events independent of transformation effi-

ciencies (Fig. 4). Therefore, this strategy seems to be

especially attractive for crop plants that are hardly trans-

formable. After transformation of the target vector and the

nuclease, the targeting vector gets excised, and then, can

trigger GT with up to 1 % efficiency (Fauser et al. 2012).

More recently, this in planta GT approach has been

adopted for the Cas9 enzyme in Arabidopsis plants. Using

this strategy, the number of T-DNAs needed was reduced

to only one harbouring the donor sequence as well as the

Cas9-sgRNA expression cassettes. Here, DSBs were

induced simultaneously in a targeting vector and also in the

endogenous ADH1 target locus by a Cas9 nuclease. Via HR

repair, it was possible to integrate a resistance cassette into

the ADH1 locus at the break site (Schiml et al. 2014).

Replicon-induced GT

In 2014, Baltes et al. (2014) presented an innovative

approach that demonstrated that the induction of GT events

was also possible using geminivirus-based replicons. It was

demonstrated that DNA carried by geminiviruses can be

used as a template for homologous recombination (Fig. 5).

Tobacco plants were transformed with T-DNA constructs

harbouring the minimal parts necessary for geminivirus

replication, a ZFN and a donor template. In this process,

after transformation, the rolling circle replication of the

replicon is initiated at the large intergenic regions (LIRs)

that flank the T-DNA construct, leading to the circulari-

sation of the construct. Thereafter, the ZFN is expressed

and induces a DSB in a defective GUS target gene. GT

events occur using the supplied correct donor template

sequence, copying it via GT in the target gene and leading

to gene restoration. With this geminivirus-based method,

the donor template is replicated multiple times, and a GT

enhancement of greater than two orders of magnitude has

been observed. Recently, this technique was also shown to

work with TALENs and Cas9 in the tomato (Čermák et al.

2015).

Manipulating the enzyme machinery during DSB-
induced GT

One major obstacle for performing GT in plants is its low

efficiency. This is because GT is based on HR, which is

only a minor pathway in higher organisms for repairing

breaks in somatic cells. One approach to enhance HR

efficiency is to express the HR-related genes of bacteria or

yeast in plants, because in lower organisms, HR occurs

Target-DNA

GT vector

Fig. 4 In planta gene targeting. By simultaneous induction of a DSB

in the target locus as well as at both ends of the GT donor vector,

which is integrated in the plant genome, both the target and the donor

vector get activated for the GT reaction
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with a high efficiency. Heterologous expression of the

strand exchange protein RecA from E. coli in tobacco

protoplasts led to the enhancement of intrachromosomal

HR by one order of magnitude (Reiss et al. 2000). The

overexpression of the HR strand invasion protein RAD54

from S. cerevisiae in Arabidopsis led to an enhanced GT

frequency of the cruciferin gene, which codes for a seed

storage protein (Shaked et al. 2005). By using egg cell-

specific expression of RAD54, it was possible to control

the protein expression both temporally and spatially. With

this egg cell-specific expression of RAD54, GT efficiency

was able to be increased by tenfold in Arabidopsis (Even-

Faitelson et al. 2011). Instead of heterologous expression of

HR-related proteins, GT efficiency could also be increased

by manipulating the break repair pathways via the sup-

pression of proteins involved in NHEJ. However, difficul-

ties in suppressing NHEJ proteins arise, as there is more

than one NHEJ-related pathway operating in plant cells. By

blocking or knocking out proteins of the classical end

joining pathway, proteins of an alternative NHEJ mecha-

nism can still efficiently carry out the repair of DSBs

(Charbonnel et al. 2011). On the other hand, mutating

proteins that are involved in the suppression of HR, such as

RECQ4A, FANCM or RTEL1, lead to a hyper-recombi-

nation phenotype in Arabidopsis (Endo et al. 2006; Har-

tung et al. 2007; Knoll and Puchta 2011; Recker et al.

2014). Modulating the expression of such proteins might

also help to increase GT efficiencies. In 2012, Kwon et al.

(2012) showed that by overexpressing OsRecQI4 and

OsExo1, two proteins involved in the resection of the DSB

side during HR, DSB-induced HR frequencies can be

altered in rice calli. After DSB induction by I-SceI, the

restoration of a disrupted GUS gene was detected by

counting blue sectors after staining. An increase in HR

events was also measured after DSB induction. When

RecQ4 or Exo1 were overexpressed, the frequencies of HR

events increased drastically and were even higher when

both proteins were overexpressed simultaneously. Instead

of overexpression, Qi et al. (2013) used a mutant of the

SMC6B gene, which is involved in sister chromatid

exchange during recombination, and showed that GT effi-

ciency could be increased at three different loci in Ara-

bidopsis. Following SMC6B knockout, sister chromatid

exchange is impaired (Watanabe et al. 2009), therefore, an

LIRRep/RepA

SIR

LIRRep/RepA

SIR

LIRRep/RepA

SIR

LB RBLIR SIR Rep/RepA LIR
Donor Sequence

LIRRep/RepA

SIR

Target-DNA

LIRRep/RepA

SIR Donor Sequence

Replicon T-DNA expression construct

Circularized Replicon

Fig. 5 Geminivirus-based replicon-mediated GT. After delivery of the

T-DNA to the plant cell nucleus, the rolling circle replication of the

replicon is initiated at the large intergenic regions (LIRs) that flank the

T-DNA construct, leading to the circularisation of the targeting vector.

GT can be triggered by inducing a DSB in the target locus, leading to

integration of the donor sequence (green) (colour figure online)
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extrachromosomal template might be used for more effi-

cient repair, leading to higher GT rates.

By combining two methods, Endo et al. (2015)

demonstrated increasing GT efficiencies in rice calli by

simultaneously enhancing GT whilst suppressing NHEJ. In

a first round of transformation, they used a Cas9 construct

to knockout the ligase 4 gene, which is an important factor

during NHEJ repair. In the second transformation step, a

GT vector harbouring the correct donor template as well as

a Cas9 construct targeting a disrupted acetolactate syn-

thase (ALS) gene were applied to the lig4-deficient calli

cells. GT frequencies of up to 1 % have been achieved with

this method. Without lig4-disruption, GT frequencies were

two- to three-fold lower.

One obstacle with this approach is that the manipulation

of the HR repair machinery can lead to a destabilisation of

the genome, as higher HR efficiencies can also lead to

undesirable recombination events between repetitive

sequence motives that are abundantly present in larger

plant genomes.

GT with positive–negative selection

A method to enrich transgenic cells that carry out GT

events is positive–negative selection (PNS). The basis of

PNS is the simultaneous use of positive- and negative-

selectable markers. Notable, by using a negative-se-

lectable marker, the active selection against random inte-

gration events is possible, as they are based on NHEJ and

represent the huge majority of the transgenic cells that are

obtained after transformation (for a review see Shimatani

et al. 2014). The positive selection marker is located

between two sequences that are homologous to the target

sequence and can be used for the selection of HR-based

integration events. The negative selection markers flank

both ends of the homologous sequences and should be

eliminated if HR-based GT takes place. If random inte-

gration of the vector occurs, the cells retain the negative

selection marker in the genome and will not be able to

survive under selection. PNS-mediated GT was first

developed for plants by Terada et al. (2002) when they

used this method to knockout the waxy locus in maize. GT

events were detected in calli surviving PNS as shown by

subsequent PCR analysis of specific targeted sequences.

GT frequencies of 6.4 9 10-4 were achieved with this

PNS screening method. Recently, this method was

improved by combining it with an nptII-resistance gene

and its antisense RNA (Nishizawa-Yokoi et al. 2015).

When both the sense and antisense nptII constructs are

transcribed, this leads to the suppression of the expression

of the sense nptII gene, rendering the plants geneticin-

sensitive. Therefore, with this approach only one resistance

gene is needed, as the sense nptII gene is utilised as the

positive marker and the antisense gene as the negative

marker. When marker-free gene editing is desired, the

positive marker can be removed after the integration event.

The marker can be placed between two loxP sites, and

therefore, can be removed after GT by Cre-loxP-mediated

recombination. As the recognition sites for the recombi-

nases are still present in the target gene after excision, the

group of Seiichi Toki recently applied the piggyBac

transposon for this purpose. This transposon integrates at

‘‘TTAA’’ sequences and is excised without leaving any

footprint behind. This was demonstrated by removing the

positive marker with the piggyBac transposon, whereupon

the target gene was reactivated. In this case, a luciferase

gene was reconstituted and the transposition of the pig-

gyBac transposon was visualised via luminescence (Nish-

izawa-Yokoi et al. 2014). To date, PNS has only been

applied for ‘‘classical GT’’ in plants; therefore, it will be

interesting to see if PNS is also able to improve the effi-

ciency of DSB-induced GT.

Outlook

In recent years, many new tools for genome engineering

have become available, of which the Cas9-sgRNA enzyme

complex plays the most prominent role, as it seems to work

in almost every plant species tested. Using this system

along with other synthetic nucleases, new approaches to

enhance GT events may become available. To date, GT

frequencies are still low and the detection of events is

laborious and requires extensive screening. Combinations

of the different approaches discussed above should open

the door to make GT more efficient. Not only can the

enzyme machinery be manipulated but also the PNS

method could be applied.

Interestingly, it was shown that the Cas9 nickase derived

from the CRISPR/Cas system is able to induce HR with a

SSB (single-strand break) instead of a DSB in plants at

frequencies comparable to that shown by the nuclease

(Fauser et al. 2014). Whether the induction of SSBs is also

able to enhance GT efficiency will be an interesting

question for future research.

By mutating both nuclease domains of Cas9 (dCas9), the

enzyme can act as a cargo protein, guiding proteins of

interest to the desired genetic sequences, e.g., transcrip-

tional activators or repressors. Targeted activation or

repression in plants using dCas9 constructs has recently

been demonstrated (Piatek et al. 2015). Such an approach

might also be an attractive way to manipulate the efficiency

of HR and/or NHEJ.

With the CRISPR/Cas system, a wide spectrum of gene

modifications is possible. However, for more complex
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genomic engineering approaches, it is desirable to induce

different cellular functions at the same time in a single cell,

e.g., DSB induction in the target gene and gene inactivation

of proteins involved in NHEJ. A way to achieve this is the

adaption of additional Cas9 nucleases for genome manip-

ulations. The Cas9 nuclease commonly used is derived

from Streptococcus pyogenes. It was shown that Cas9

orthologues originating from Streptococcus thermophilus

and Staphylococcus aureus seem to work with comparable

efficiencies to that of the S. pyogenes Cas9 (Esvelt et al.

2013; Jinek et al. 2012; Kleinstiver et al. 2015; Ma et al.

2015; Ran et al. 2015). In contrast to S. pyogenes, these

orthologues have different PAM requirements for target

recognition and are accompanied by specific sgRNAs.

Recently, it has been demonstrated that these orthologues

work efficiently in A. thaliana (Steinert et al. 2015). It was

also shown that S. aureus Cas9 can induce intrachromo-

somal HR by inducing a DSB in an SSA-dependent GUS-

reporter line. DSB induction occurred without interspecies

interference, as only species-specific combinations of Cas9

and sgRNA led to DSB induction, demonstrating that the

Cas9 enzymes tested act without cross-species interference,

and therefore, can be used for more complex cellular

approaches. With the Cas9 orthologues, the toolbox for

genome and transcriptome engineering in plants is

becoming larger and we are taking further steps towards

developing synthetic plant genomes (for a review see

Puchta 2016). Whereas, synthetic plant genomes are

obviously a long way off, it does not seem to be out of the

question that DSB-induced GT in plants will become

increasingly efficient in the near future due to the appli-

cation of the various recently developed innovative new

strategies discussed in this review.
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