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Getting better all the time — recent progress in the
development of CRISPR/Cas-based tools for plant
genome engineering
Niklas Capdeville, Patrick Schindele and Holger Puchta

Since their first adaptation for plant genome editing, clustered
regularly interspaced short palindromic repeats/CRISPR-
associated system nucleases and tools have revolutionized the
field. While early approaches focused on targeted mutagenesis
that relies on mutagenic repair of induced double-strand
breaks, newly developed tools now enable the precise
induction of predefined modifications. Constant efforts to
optimize these tools have led to the generation of more efficient
base editors with enlarged editing windows and have enabled
previously unachievable C–G transversions. Prime editors were
also optimized for the application in plants and now allow to
accurately induce substitutions, insertions, and deletions.
Recently, great progress was made through precise
restructuring of chromosomes, which enables not only the
breakage or formation of genetic linkages but also the
swapping of promoters.
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Introduction
In view of the growing challenges in the cultivation of
crops, the demand for the breeding of new cultivars by
either optimizing existing plant lines or domesticating
wild varieties is increasing. A central prerequisite is ac-
cess to a wide range of different traits and trait expres-
sion, which requires a high number of different
genotypes. The development of programmable nu-
cleases and genome engineering tools has greatly ac-
celerated the target-specific induction of such genetic

variability. Especially, the adaptation of the clustered
regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated (Cas) system has re-
volutionized targeted mutagenesis through error-prone
repair of induced double-strand breaks (DSB). The
characterization of various natural CRISPR/Cas nu-
cleases and their optimization through protein en-
gineering have made almost any site of the plant genome
accessible. Furthermore, tools for the modification of
gene expression and chromatin status have been devel-
oped based on catalytically dead Cas enzymes (for re-
view see [1]).

However, many agronomically important traits are con-
ferred by only a few specific base changes that cannot be
induced using the regular toolkit. Thus, new tools were
developed enabling the induction of precise and pre-
defined genomic alterations. Another bottleneck is the
inheritability of traits. Recent progress in the re-
structuring of whole chromosomes promises the possi-
bility to break and generate genetic linkages in a
targeted matter as well as to influence local recombina-
tion patterns. In regard to the high significance of such
sequence changes, this article will focus on technological
advances in the manipulation of DNA sequences
achieved since the publication of the last review on the
same topic in this series [2].

Expanding the CRISPR/Cas toolbox with new
nucleases
In contrast to class-I CRISPR/Cas systems, class-II sys-
tems are characterized by a single effector protein and,
thus, have long been the major systems applied for
genome editing approaches. Many efforts were put into
the optimization of especially the type-II Cas9 and the
type-V Cas12a effectors. In order to bypass one of the
main restrictions, the requirement of a protospacer-ad-
jacent motif (PAM), a number of novel Cas9 and Cas12a
variants were developed. Recently, the group of Yiping
Qi generated SpMacCas9, as well as an improved variant
(iSpMacCas9), by transferring the PAM-interacting do-
main of Cas9 from Streptococcus maccacae to the most
commonly used Cas9 ortholog from Streptococcus pyogenes
(SpCas9), enabling efficient editing of 5′-NAA-3′-
flanked sequences in plants [3,4]. The broadest PAM
recognition in plants was obtained by combining the two
variants SpCas9-NG and xCas9, resulting in XNG-Cas9
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[5]. However, relaxing PAM requirements can increase
off-target effects. Therefore, the group of Lei Yin most
recently developed a variant of Cas12a from Lachnos-
piraceae bacterium (LbCas12a) with more stringent PAM
recognition and lower off-target frequencies in mam-
malian cells [6]. Another problem of Cas12a systems is
their reduced cutting efficiency at typical plant cultiva-
tion temperatures. Thus, a temperature-tolerant
LbCas12a version was developed, outperforming pre-
viously engineered Cas12a variants at 22°C and 28°C [7].
Most recently, editing efficiency could be further en-
hanced by introducing introns into the open reading
frame of ttLbCas12a [64].

Besides the manipulation of existing systems, the on-
going search for new CRISPR/Cas systems has provided
a wide variety of new nucleases. Over 70 new Cas9 or-
thologs with different PAM requirements could be
identified [8] and six new Cas12a orthologs showed ro-
bust editing efficiencies in rice [9]. Furthermore, a
number of new subtypes of type-V nucleases were
identified. Similar to Cas12a, Cas12b induces staggered
cuts with 6–8-nt-long 5′ overhangs at targets flanked by a

5′ T-rich PAM and was recently adapted for gene
editing in both monocotyledons and dicotyledons
[10,11]. Driven by the need for smaller effectors in the
delivery of gene therapy agents, Cas12e and Cas12j
(formerly CasX and CasΦ, respectively) were adapted as
gene editors in human cells [12,13]. Recently, a new
class of especially small Cas nucleases was characterized
and assigned to the type-V-F family [14]. As the devel-
opment of transgene-free edited plants relies on viral-
based vectors with strict cargo size limitations, such
small nucleases are also of great interest for plant bree-
ders and researchers. Thus, the Cas12f1 nuclease from
Syntrophomonas palmitatica was engineered for genome
editing in both human cells and maize [15]. Another
Cas12f system was used successfully to provide viral
resistance through transient expression in Nicotiana
benthamiana [16].

Class-I type-I CRISPR/Cas systems are promising can-
didates as well, as they are the most abundant systems in
bacteria. So far, nucleases of type I-D and -E were
successfully applied in both mammals and plants and
shown to provide new mutation patterns [17,18] (Fig. 1).

Figure 1
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Representative structures of CRISPR/Cas systems. (A) Class-II type-II CRISPR/Cas9 system. Cas9 uses either a CRISPR-RNA (crRNA) together with a
transactivating crRNA (tracrRNA) or a synthetic single-guide RNA (sgRNA) to identify its target sequence. It cleaves the DNA 3 bp upstream of its G-
rich PAM sequence on the target strand and 3–6 bp upstream on the nontarget strand, resulting in either a blunt-ended DSB or up to 3-nt-long 5′
overhangs. (B) Class-II type-V-A CRISPR/Cas12a system. Cas12a naturally only needs a crRNA to identify its target sequence and cleaves the DNA
18 bp and 23 bp downstream of the T-rich PAM sequence on the nontarget and target strand, respectively. (C) Class-II type-V-B CRISPR/Cas12b
system. Cas12b is significantly smaller than Cas9 or Cas12a and combines characteristics of both. Like Cas9, it needs an additional tracrRNA that can
be fused with the crRNA to form a sgRNA. However, similarly to Cas12a, it recognizes T-rich PAM sequences and induces a staggered DSB with 5–6-
nt 5′ overhangs. (D) Class-I type-I-E CRISPR/Cas3 system. Unlike class-II systems, target binding and cleavage in class-I systems is mediated by a
protein complex. The Cascade complex containing Cas5, Cas6, Cas7, Cas8, Cas11, and the crRNA binds to the target site that is then digested
by Cas3.
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Base editing
While targeted mutagenesis has been proven to be a
valuable tool, the induction of predictable changes is of
great interest for plant research and breeding. Base
editors, which consist of an engineered Cas nuclease
paired with a base deaminase, enable targeted sub-
stitutions without InDel formation. Therefore, constant
efforts are being taken to improve their efficiency and
possible applications. Original BE enabled transitions
from cytidine (C) to thymidine (T) (cytidine base edi-
tors, CBE) based on uracil, which results from the dea-
mination of cytidine, being recognized as thymidine by
polymerases. The additional fusion with a uracil glyco-
sylase inhibitor was able to further boost CBE effi-
ciencies. Later, adenine base editors (ABE) were
developed that enabled adenine (A) to guanine (G)
transitions through adenine deamination, resulting in an
inosine (I), which is treated as a G by polymerases
(Fig. 2). As the deamination is the crucial step, different
natural deaminases as well as engineered versions were
used to improve the mutagenesis frequency. Most re-
cently, Hua et al. achieved increased editing efficiencies
at almost all tested targets in rice using a simplified
version of an existing ABE [19]. Moreover, inhibition of
histone deacetylation might be a promising approach to
enhance editing efficiencies, as was shown in human
cells [20]. Nevertheless, target availability is another
limiting factor concerning the application of BE, as the
targeted bases have to be located within a certain dis-
tance to the PAM. Thus, BE based on different Cas9
orthologs [21–23] or LbCas12a [24] were used to reduce
PAM-dependent restrictions. Furthermore, several
SpCas9 PAM variants were explored, increasing the
amount of targetable sequences [25]. Most recently, a
near-PAM-less ABE was applied successfully in rice
[26,27]. However, it was shown that relaxation of PAM
requirements leads to an increased off-target frequency
[28]. Thus, engineered versions of BE were developed
to increase their sequence specificity [29,30]. Another
bottleneck is the relatively small editing window of most
BE. To overcome this limitation, an additional fusion of
a single-strand DNA-binding domain was used to ex-
pand the editing range [31]. Most recently, a CBE based
on an engineered version of the human AID cytosine
deaminase provided consistent editing efficiency within
an increased activity window [32].

In order to enable simultaneous cytidine and adenine
base editing, several saturated targeted endogenous muta-
genesis editors were developed [33]. On the other hand,
aptamer-based CRISPR simultaneous and wide-editing in-
duced by a single system enabled multiplexed base editing
as well as InDel generation in a target-dependent
manner [34]. Most recently, the CRISPR-Combo system
was developed, which consists of a BE that simulta-
neously enables gene activation. The desired effect at
the specific target is mediated by the gRNA. In order to

prevent break induction and, thus, base editing at gene
activation targets, a shortened gRNA is used. In its stem
loops, it contains aptamers that recruit corresponding
coat proteins, fused to a SunTag GCN4 epitope chain.
Thus, up to forty copies of an activation domain can be
recruited to a single target [35] (Figure 2B).

While the beforementioned systems can only generate
transition mutations, recently, BEs were developed
which enabled C–G editing in several plants by re-
cruiting a uracil glycosylase, leading to an abasic site. In
plants, such sites are repaired by the translesion poly-
merase REV1 that preferably incorporates a C opposite
to an abasic site [36–38] (Fig. 2C). In order to enable
transversions from A to Y (C or T), the group of Qinlong
Zhu attempted to recruit enzymes of the base excision
repair and alternative excision repair pathways, as both
of these pathways are involved in I:T mismatch repair.
However, both approaches yielded no A–Y conversions,
and partly lead to InDel formation [39].

Although altered Cas nucleases and deaminases now
possess greatly improved editing efficiency and target
availability, heritable base editing remains challenging.
By viral delivery of the gRNA in Cas-expressing plants,
Liu et al. achieved heritable base editing in transgenic
Arabidopsis plants [40]. Most recently, transgene-free
base editing was achieved through viral vector-based
delivery of an intein-splitted ABE [41].

Gene targeting and prime editing
While base editing is a promising tool for the targeted
induction of base substitutions, it is not suitable for the
induction of predefined modifications on a larger scale. A
suitable tool for the achievement of such changes is gene
targeting (GT), which relies on homologous-directed
repair (HDR) of induced DSB [42]. However, since
HDR is not the main repair pathway in somatic plant
cells, GT efficiencies are still relatively low, despite
constant efforts to optimize the system. As one of the
limiting factors is the efficiency of DSB induction, the
choice of the nuclease plays a key role for successful GT.
By using ttLbCas12a, heritable GT events could be
generated in tobacco with improved efficiencies in
comparison with Cas9 [43]. Through overexpression of
the two morphogenic genes WUSCHEL and BABYB-
OOM, not only higher transformation rates but also in-
creased GT efficiencies were achieved in maize and
sorghum [44,45].

However, GT relies on the induction of DSB that harbors
the potential for unwanted InDel formation. The recently
developed prime editing method on the other hand enables
precise sequence modifications without requiring a DSB.
Prime editors (PE) are based on a reverse transcriptase (RT)
fused to a Cas9 nickase. Using a 3′-elongated prime editing
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guide RNA (pegRNA) as a template, this tool precisely in-
troduces insertions, deletions, and substitutions into the
nicked DNA strand. One part of the pegRNA is com-
plementary to the DNA sequence adjacent to the induced
single-strand break and serves as a primer for the RT
(primer-binding site, PBS). A second part contains the de-
sired edits and is referred to as RT template (RTT).
Subsequent DNA repair can then result in stably edited

dsDNA (Fig. 2D). The first systems were based on the RT
from Moloney murine leukemia virus (M-MLV). By indu-
cing eight amino acid changes, this RT was optimized, re-
sulting in PE2 with increased temperature tolerance and
efficiency in mammalian cells. Further amelioration of
editing frequencies could be obtained by inducing a second
nick on the nontargeted DNA strand either several bp
downstream of or within the modified sequence (PE3/PE3b)

Figure 2
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Representative structures of base and PE. (A) Cytidine and ABE. Using a respective deaminase domain, both enable the induction of transition
mutations. Deamination of cytidine results in a uracil that is recognized as a thymidine by polymerases. Removal of uracil is inhibited through
additional fusion of a uracil N-glycosylase (UNG) inhibitor. Deamination of adenine yields an inosine that is recognized as guanine by polymerases. In
both cases, Cas9 nickase-mediated cleavage of the nonedited strand increases the frequency of stable base editing. (B) CRISPR-Combo system. In
order to enable base editing at one target and activation of gene expression at another, the CRISPR-Combo system uses aptamer-based recruiting of
GCN4 epitope chains that are recognized by a specific antibody fused to an activator domain. Thus, up to forty copies of the activator domain can be
recruited to a specific target. Cas9 cleavage activity is inhibited by using a shortened guide RNA. (C) C–G base editor. By replacing the UNG inhibitor
domain of a CBE with a UNG, uracil removal is promoted. During repair of the nicked strand, translesion synthesis opposite of the apurinic (AP) site
preferably integrates a cytidine. Subsequent AP repair effectively results in a C–G transversion in the edited strand. (D) PE consist of a Cas9 nickase
fused to a RT. The elongated pegRNA includes a part that is complementary to the nicked DNA strand and serves as PBS for the RT. Following the
PBS, the pegRNA encodes desired edits that the RT transfers to the DNA. (E) By combining two PE that induce the same edits in opposite DNA
strands, editing efficiencies can be significantly increased.
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[46]. Nevertheless, constant efforts are being made to further
improve the system. In human cells, transient inhibition of
mismatch repair was shown to increase the efficiency of PE2
and PE3 (PE4/PE5) [47]. By replacing the nickase with a
nuclease, Adikusuma et al. achieved enhanced prime editing
initiation in mammalian cells. However, intended edits were
often accompanied by additional InDels [48]. Interestingly,
PE2 did not yield efficient editing in plants and, in contrast
to animals, frequencies were not increased using PE3 sys-
tems. While Xu et al. were able to enhance screening effi-
ciency using a surrogate plant PE2 system in rice to enrich
edited cells [49], further improvements are required before
PE can be widely used in plants. An attempt to exchange
the RT domain with the RT of the plant-specific Cauli-
flower mosaic virus or a retron-derived RT from E. coli un-
fortunately even reduced editing efficiencies [50]. However,
N-terminal fusion of the PE2 M-MLV RT was shown to
perform better in rice and maize [51]. Most recently, Zong
et al. designed an engineered plant PE by removing the ri-
bonuclease H domain of M-MLV RT and adding a virus-
derived protein with nucleic acid chaperone activity [52].
However, not only the RT domain is subject to constant
efforts for improvement, the expression system as well as the
length of PBS and RTT of pegRNAs were shown to have a
major impact on editing efficiencies as well [53,54]. Lin et al.
found that by optimizing the melting temperature of the
PBS, PE efficiency can be improved. Additionally, it was
shown that using two pegRNAs that encode the same edits
but target complementary DNA strands highly promotes the
desired outcome (Fig. 2E). The resulting increased PAM
restrictions for the target design could be overcome using
SpCas9 PAM variants [55]. In human cells, a similar ap-
proach with two pegRNAs encoding complementary DNA
flaps was used successfully to precisely delete the sequence
in- between [56].

Taken together, the induction of predefined sequence
changes is achievable in plants, although further efforts
are necessary to increase the efficiency of this promising
system.

Restructuring genomes
CRISPR/Cas-based gene editing tools, such as base and
PE, have been proven to be valuable instruments for the
precise induction of single base pair changes, thus al-
lowing the generation of alleles with improved agrono-
mically important traits. However, to combine such traits
in a single cultivar, breeders rely on meiotic re-
combination that can be hindered by naturally occurring
inversions and genetic linkages. Thus, the targeted in-
duction of recombination as well as the creation and
breakage of genetic linkages is of great interest for plant
breeders. Recently, it was proven that it is possible to
induce predictable chromosomal inversions or translo-
cations through the simultaneous induction of two DSB
on either the same or on two different chromosomes,
respectively [57,58]. Chromosomal inversions can be
utilized for a promotor swap, as was shown in rice, re-
sulting in a strong upregulation of gene expression
without the need to insert regulatory elements [59]
(Fig. 3). On a larger scale, Schwartz et al. were able to
revert a 75.5-Mbp pericentric natural inversion in maize,
unlocking this region for recombination [60]. More re-
cently, Rönspies et al. achieved massive crossover sup-
pression by inverting almost an entire chromosome in
Arabidopsis [61] (Fig. 3 B). Thus, chromosomal en-
gineering can be a valuable tool for breeders, as it fa-
cilitates the generation of improved varieties of existing
crops [62]. However, CRISPR/Cas applications also
open new doors for synthetic plant biology: by inducing
multiple DSB in functional repeats, which resulted in

Figure 3
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CRISPR/Cas-mediated change of chromosomal structures. (A) By inducing two DSB, a 911-kb inversion was incited in rice. As the break sites were
chosen between two genes and their respective promoter, the inversion effectively resulted in a promoter swap of those genes, which consequently
leads to exchange of their expression rate. (B) On a larger scale, almost a whole chromosome was successfully inverted in Arabidopsis, which resulted
in massive crossover suppression within the inverted sequence.
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whole-genome elimination, tissue-specific Cas9 expres-
sion was used for the controlled elimination of distinct
organs, such as petals and side roots [63].

Conclusion
The ongoing discovery of new CRISPR/Cas systems and
efforts to further optimize existing as well as to develop
new tools, have made almost the entire plant genome
accessible for precise editing. Thus, we were able to
overcome the need for hoping for random favorable
mutations. Instead, we are now able to not only induce
modifications ranging from single bases up to several
Mbp with high specificity but to also influence re-
combination on a chromosomal level. One can be opti-
mistic that, if we will be able to keep up the high pace of
innovation in the field, the efficient generation of new
crop varieties, better suited to address current and future
challenges of our ever-changing environment, will soon
come into reach.
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