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Summary
Nicotiana tabacum is a non-food herb that has the potential to be utilized as bio-factory for

generating medicines, vaccines or valuable small metabolites. To achieve these goals, the

improvement of genetic tools for pre-designed genome modifications is indispensable. The

development of CRISPR/Cas nucleases allows the induction of site-specific double-strand breaks

to enhance homologous recombination-mediated gene targeting (GT). However, the efficiency

of GT is still a challenging obstacle for many crops including tobacco. Recently, studies in several

plant species indicated that by replacing SpCas9 with other CRISPR/Cas-based nucleases, GT

efficiencies might be enhanced considerably. Therefore, we tested SaCas9 as well as a

temperature-insensitive version of LbCas12a (ttLbCas12a) for targeting the tobacco SuRB gene.

At the same time, we also optimized the protocol for Agrobacterium-mediated tobacco

transformation and tissue culture. In this way, we could improve GT efficiencies to up to a third

of the inoculated cotyledons when using ttLbCas12a, which outperformed SaCas9 considerably.

In addition, we could show that the conversion tract length of the GT reaction can be up to

606 bp long and in the majority of cases, it is longer than 250 bp. We obtained multiple

heritable GT events, mostly heterozygous, but also biallelic GT events and some without T-DNA

integration. Thus, we were not only able to obtain CRISPR/Cas-based heritable GT events in

allotetraploid Nicotiana tabacum for the first time, but our results also indicate that ttLbCas12a

might be a superior alternative for gene editing and GT in tobacco as well as in other crops.

Introduction

Gene targeting (GT) is based on a homologous recombination

(HR) reaction between a genomic target locus and an exoge-

nously applied DNA template. Thus, pre-designed modifications

can be introduced into a single specific site of the genome. In

1988, GT was achieved in plants for the first time (Paszkowski

et al., 1988). This first experiment was performed in tobacco, but

the frequencies were too low for practical applications. Despite its

long history, further progress in the development of a GT

technology for plants was slow. One fundamental reason for this

is that the non-homologous end joining (NHEJ) pathway is the

major DNA repair mechanism in the somatic cells of plants

(Puchta, 2005). A major breakthrough, also performed in

tobacco, was the demonstration that the induction of site-

specific DNA double-strand breaks (DSBs) can enhance GT

frequencies by up to several orders of magnitude (Puchta,

2016; Puchta et al., 1996). Later on, synthetic site-specific

nucleases (SSNs) were developed. Again, the first studies on

targeting natural genes in plants by the use of zinc finger

nucleases (ZFNs) (Townsend et al., 2009) as well as transcription

activator-like effector nucleases (TALENs) were performed in

tobacco (Zhang et al., 2013).

More recently, SSNs of the CRISPR/Cas class, which originate

from the bacterial immune system against foreign DNA (Barran-

gou and Marraffini, 2014), were adopted for plants. Cas

nucleases use only a short protospacer sequence within their

CRISPR RNA (crRNA) for the determination of target specificity.

Due to their simple cloning requirements, CRISPR/Cas systems

became the most popular tool for DSB induction in biology and

breeding (Atkins and Voytas, 2020; Schindele et al., 2020; Zhu

et al., 2020). Many different CRISPR/Cas orthologs and variants

were already applied in plants for the induction of DSBs [see

review (Zhang et al., 2019)]. The requirement of different

protospacer adjacent motifs (PAMs) among CRISPR/Cas orthologs

enables the development of diverse CRISPR/Cas tools to target al-

most any genomic locus. The most frequently applied CRISPR/Cas

nuclease in plants is Cas9 from Streptococcus pyogenes (SpCas9).

Recently, also Cas9 from Staphylococcus aureus (SaCas9) and

Cas12a from Lachnospiraceae bacterium ND2006 (LbCas12a) are

used in plants more often. Both Cas9 nucleases generate DSBs

with blunt ends, only 3 nucleotides upstream of the NGG PAM of

SpCas9 or the NNGRRT PAM of SaCas9. Comparisons between

SpCas9 and SaCas9 in some reports suggest that SaCas9 has a

higher DSB induction efficiency than SpCas9 (Raitskin et al.,

2019; Steinert et al., 2015). Different from Cas9, the LbCas12a

endonuclease generates staggered DNA ends, and the cleavage

site is distal from its TTTV PAM sequence. Recent evidence in

many different organisms including plants indicates that DSBs

induced by Cas12a might result in higher GT efficiencies than

those induced by Cas9 (Li et al., 2018; Li et al., 2020; van Vu

et al., 2020; Wolter and Puchta, 2019). However, LbCas12a was
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reported to have more variability in activity depending on the

target locus or protospacer sequences (Bernab�e-Orts et al., 2019).

Moreover, it is less active at lower temperatures (Malzahn et al.,

2019), hindering its application in plants. Recently, an engineered

temperature-insensitive LbCas12a (ttLbCas12a) with a D156R

mutation was shown to be more efficient than the wild-type

enzyme for both mutagenesis and GT in Arabidopsis (Merker

et al., 2020; Schindele and Puchta, 2020), making ttLbCas12a an

excellent candidate for DSB induction in crops as well.

Instead of its use for smoking, cultivated tobacco, Nicotiana

tabacum, as well as Nicotiana benthamiana hold great potential

to be used as bio-factories for the production of medicines,

vaccines or other valuable small metabolites (Capell et al., 2020;

Ma et al., 2005; Nogueira et al., 2018; Stoger et al., 2014;

Tschofen et al., 2016). To approach this goal, molecular tools for

genome editing are necessary for building this ‘molecular farm’.

In recent years, many CRISPR/Cas-mediated GT applications in

various plant species could obtain heritable events, as shown in

rice, Arabidopsis, tomato and maize (Barone et al., 2020; �Cerm�ak

et al., 2015; Dahan-Meir et al., 2018; Danilo et al., 2019; Endo

et al., 2016; Hahn et al., 2018; Li et al., 2019; Li et al., 2020;

Merker et al., 2020; Miki et al., 2018; Pater et al., 2018; Peng

et al., 2020; van Vu et al., 2020; Wolter et al., 2018; Wolter and

Puchta, 2019). However, GT applications performed in crops with

complex genomes, such as barley or wheat, were relatively scarce

and often lack heritable events (Baltes et al., 2014; Gil-Humanes

et al., 2017; Watanabe et al., 2016). Despite its huge potential as

bio-factory, only one study has been undertaken to establish a

SpCas9-based GT approach in tobacco (Hirohata et al., 2019), but

the efficiency was not very promising. Surprisingly, until now no

report has been published on the production of CRISPR/Cas-

based heritable GT events in N. tabacum or N. benthamiana.

In this study, we successfully generated GT events in

N. tabacum using SaCas9 as well as ttLbCas12a. We chose the

acetolactate synthase (ALS) gene as target to introduce an

herbicide-resistant phenotype for examining GT efficiencies. ALS

is a key enzyme for the biosynthesis of branched-chain amino

acids and can be suppressed by imidazolinone herbicides. In

allotetraploid tobacco, ALS is encoded by two genes, SuRA and

SuRB. Previous studies identified the corresponding resistance

mutations from naturally occurring resistances [see review:

(Tranel and Wright, 2002)]. Our results show that two herbicide

resistance modifications, W568L and S647T, can be simultane-

ously incorporated into the SuRB gene with high efficiencies.

Multiple GT events were obtained and inheritance to the next

generation could be documented. These events were inherited in

a Mendelian fashion, most as single alleles, some biallelic, some T-

DNA-free. Analysis of mutagenesis by next-generation sequenc-

ing (NGS) indicated that ttLbCas12a possessed a two- to

threefold higher editing efficiency than wild-type LbCas12a,

suggesting ttLbCas12a is not only a suitable nuclease for GT

induction but also a promising molecular tool for inducing

mutations in general in various crop plants.

Results

Mutagenesis efficiency of LbCas12a and ttLbCas12a

Recent results of several groups indicate that the use of LbCas12a

is an attractive alternative nuclease for GT in Arabidopsis, tomato

and rice. Recently, we optimized the enzyme for use in

Arabidopsis by exchanging a single amino acid resulting in

ttLbCas12a, which showed a two- to sevenfold increase in editing

efficiency compared to LbCas12a at ambient temperature

(Schindele and Puchta, 2020). To compare the nuclease activity

of LbCas12a and ttLbCas12a in a pilot experiment in tobacco, we

performed the tobacco transformation using the sgRNA P3 for

targeting the SuRB gene and cultured the resulting callus tissue at

22°C or 28°C (Figure 1a-c). After 6 and 10 weeks, genomic DNA

was extracted from surviving calli originating from individual

cotyledons and the target locus was amplified. Sequencing results

were analysed by TIDE analysis for quantification of the mutation

induction (Brinkman et al., 2014). For both the 6-week and 10-

week cultured calli, we found that ttLbCas12a has a higher

insertion–deletion (Indel) frequency than LbCas12a at both

temperatures (Figure 1a, b). However, raising the temperature

from 22°C to 28°C alone did not enhance mutation efficiency,

neither in 6-week nor 10-week cultured samples. To obtain more

insight into ttLbCas12a- and LbCas12a-mediated mutagenesis,

using SaCas9 as a control, we performed NGS analysis of four

targets: P1 and P2 sgRNAs for SaCas9, and P3 and P4 crRNAs for

LbCas12a (Figure 1c, d), using 3-week samples cultured at 22°C.
Eight transformed cotyledons were pooled for genomic DNA

extraction. Because the PCR primers used cannot specifically

recognize only the SuRB gene, we amplified a fragment repre-

senting not only the SuRB but also the SuRA gene (Data S1 and

S2). As shown in Figure 1d, we obtained mutated sequences in

about 5% of the reads for SaCas9 using either P1 or P2. For

LbCas12a, we obtained a similar frequency for P3 and around

13% for P4. Most importantly, for both P3 and P4 targets, the

Indel efficiencies of ttLbCas12a are increased 2.5-fold for P3 and

almost threefold for P4 compared to the original LbCas12a

(Figure 1d). In the best case, more than a third of the reads

showed mutations. Among all Indels, both protospacers for

SaCas9 show around 80% insertions, while mutagenesis using

LbCas12a and ttLbCas12a is composed only of deletions (in over

99% of cases, see Figure 1e). The distributions of deletion sizes

are different between P3 and P4. Whereas with P3 shorter

deletions between 1 to 5 bp were achieved, P4 produced more

larger deletions around 10 bp (Figure 1f). However, the differ-

ences between ttLbCas12a and LbCas12a are not obvious. Thus,

we found that ttLbCas12a is clearly more efficient than the wild-

type enzyme for generating DSB induction in tobacco. Therefore,

we decided to use ttLbCas12a for our GT experiments in tobacco.

GT designs and culture conditions

To test the usefulness of ttLbCas12a and SaCas9 for GT in

tobacco, we chose the ALS gene as target, which has also been

used by others in various plant species including tobacco

(Hirohata et al., 2019; Townsend et al., 2009; Zhang et al.,

2013). Acetolactate synthase in N. tabacum is encoded by two

genes, the SuRA open reading frame (ORF) which consists of 667

amino acids, and SuRB which consists of 664 amino acids. Their

sequence identity on the amino acid level is 97.4% (649/666) and

the identity on the nucleotide level is 96.1% (1924/2001) in the

coding regions. We used the SuRB sequence for the design of the

GT donor, similar to the previous report (Hirohata et al., 2019). To

perform GT experiments, we designed three different GT vectors.

We utilized the protospacers P1 and P2 for SaCas9 and

protospacer P4 for ttLbCas12a for DSB induction in GT experi-

ments. As shown in Figure 2a, vectors contain the Cas nuclease

expression cassette, the GT donor with two flanking cleavage

sites and gRNAs for simultaneous excision of the homologous

donor out of the T-DNA and cleavage of the target SuRB to

induce the HR-mediated GT reaction.
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All three GT donor sequences contain several modifications.

These include two imazapyr resistance mutations, W568L and

S647T, a mutation that removes a genomic BglII site and a

mutation that introduces a novel Xhol site into the genomic SuRB

gene (Figure 2b-d). Furthermore, vector ttLb contains silent

mutations in the donor sequence to block Cas12a cleavage

within the homologous region, as well as the protospacer P4 and

the ttLbCas12a ORF under the control of the ubiquitin promotor

from Petroselinum crispum and the rubisco terminator (Fig-

ure 2b). Vector Sa-3sg equivalently contains the protospacer P1

and the SaCas9 ORF (Figure 2c). In addition, the homologous

donor sequence contains a synonymous change at position

Leu447 and two additional sgRNA target sites for the excision of

the GT donor (Table S1). Vector Sa-at contains the protospacer

P2 for SaCas9 to cut the genomic SuRB locus as well as excise the

homologous sequence from the T-DNA donor (Figure 2d). The

homologous donor sequence within Sa-at contains two synony-

mous changes at positions Leu447 and Thr477 on the site

proximal to the DSB. The sequence distal to the DSB contains the

W568L and S647T modifications. Between these, a 240 bp

region from Arabidopsis ALS ORF (AT3G48560) is located,

reducing homology in this region to only 72.5% identity

(Figure S1). As the three constructs use different crRNAs to

induce DSBs in the SuRB gene, different silent mutations had to

be introduced in the homologous vector sequence to prevent

cleavage of the donor. All silent mutations are synonymous

changes (Figure 2e).

As only a tiny fraction of the transformation events will result in

regenerated plants carrying a heritable GT event, one way to

enhance GT efficiency is to improve the transformation and

regeneration protocols of the respective plant species. Therefore,

we optimized several steps of our transformation and in vitro

cultivation protocol of tobacco, which is described below and

shown in Figure 2f.

Agrobacterium-mediated tobacco cotyledon transformation

was performed in germination plates. To reduce the variation

between different experiments, we always adjusted agrobacterial

cell density to OD560 = 1 in the infiltration solution. This

agrobacteria solution was directly poured into the plates with

2-week-old tobacco seedlings. These seedlings, immersed within

the agrobacteria solution, were placed into a desiccator for

vacuum infiltration. Afterwards, the agrobacteria solution was

Figure 1 Mutagenesis efficiency of the SaCas9, LbCas12a, and ttLbCas12a nucleases. (a,b) The Indel efficiencies of transgenic calli after 6- (a) and 10-

week (b) incubation at 22°C and 28°C were analysed by TIDE, using protospacer P3. The bars represent the percentage of reads with Indels from individual

calli. (c) Sequences of the protospacers used to generate DSBs at the SuRB and SuRA loci. (d) Indel analysis by next-generation sequencing. (e) Comparison

of the ratio of insertion and deletion formation after cutting by SaCas9, LbCas12a and ttLbCas12a as determined by NGS. (f) Comparison of distributions of

deletion sizes obtained from LbCas12a and ttLbCas12a.
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discarded and the tobacco seedlings together with the germina-

tion medium were washed with sterilized H2O. At this point,

cotyledons that were efficiently infiltrated are slightly transparent

and of darker green colour, similar to vitrification. Only these

cotyledons were labelled, then cut from the seedlings three days

later and transferred to a callus-inducing medium. To avoid

interference between individual cotyledons, each cotyledon was

cultured in an individual chamber of a 24-well plate for the first

4 weeks. We used 24-well plates as we found out in pilot

experiments that the survival rate of arising calli was reduced on

standard plates. Cotyledons were transferred to fresh medium

every week. In the first 2 weeks, cotyledons were inoculated on

medium containing kanamycin. Subsequently, the cotyledons

were transferred to imazapyr-containing medium to start the

selection of GT events from the third week on. After the first

4 weeks of culturing, cotyledons started to form callus tissue. The

browning parts were removed to maintain the callus in a healthy

state. In the meantime, we recorded the surviving cotyledons or

calli every week (Figure S2). To ensure that each GT event we

obtained was an independent event, every callus originating from

the same cotyledon was labelled accordingly. After 12 weeks of

culturing, the surviving samples reached a stationary phase. These

Figure 2 Setup of the GT experiments. (a-d) Design of the targeting vectors. Each construct contains a functional Cas nuclease and GT donor with silent

mutation to prevent cleavage after HR. These differences between genomic SuRB and GT donors were listed. Both ttLb and Sa-at donors have their

corresponding gRNA targets flanking the GT donor (yellow triangles). In Sa-at, the sequence between W568L and S647T comes from Arabidopsis ALS

(orange). (e) The design of silent mutations to avoid cleavage within the homologous regions of the vectors. (f) Graphical sketch of the improved

transformation/in vitro cultivation protocol used for GT.
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calli or regenerated shoots were then analysed for the molecular

nature of the GT modifications.

As shown in Table 1, we performed all in all four independent

experiments. In the first three experiments, we applied the

ttLbCas12a as well as both SaCas9 vectors for GT. In the fourth

experiment, we only applied the ttLbCas12a vector, but we

compared two incubation temperatures. In the first experiment,

we still applied standard plates for the first 4 weeks. As the

resulting numbers of GT events turned out to be unsatisfactory,

we started to use 24-well plates for all other experiments. With

ttLbCas12a we obtained around threefold more imazapyr-resis-

tant calli in the second experiment and sixfold more in the third

experiment. The efficiency achieved using this enzyme was

surprisingly high in both experiments. We were able to obtain

imazapyr-resistant calli from almost every third cultivated cotyle-

don.

Molecular analysis of the gene-targeting events

Next, we set out to demonstrate by molecular analysis that the

imazapyr resistance was indeed due to homologous recombina-

tion between target vector and the genomic SuRB locus. To

characterize the molecular nature of the events in detail, we

prepared genomic DNA and performed cleaved amplified poly-

morphic sequence (CAPS) analysis as well as sequence analysis of

amplified PCR fragments.

A representative CAPS analysis for a number of ttLbCas12a

induced GT events is shown in Figure 3b. The PCR fragments osG

and pG were amplified for the analysis. For amplification of osG,

one PCR primer with a binding site outside and the second with a

binding site inside of the homologous region of the GT vector

were used (Figure 3a). This PCR product is used for confirmation

of HR at the left homologous arm of the GT donor by CAPS, and

sequence analysis for the detection of the respective newly

introduced mutations. The second PCR primer set has binding

sites outside of the homologous region but not in the GT vector,

resulting in the amplification of the fragment pG. The sequence

of this PCR product is required to confirm that HR reactions took

place at both the left and right homologous arms of the GT

donor. To discriminate between the genomic sequence and

amplified GT events, we used restriction digests of both

fragments. Depending on the conversion tract length of the HR

reaction, a BglII site should be removed and a de novo XhoI site

introduced into the genomic SuRB site. Thus, we could not only

confirm GT events but also define the conversion tract length

more accurately. Both amplification products can be obtained

from the wild type as well as the targeted allele. However, the WT

fragments carry a BglII but no XhoI site. If targeting occurs in one

allele, a mixture of both the GT and WT allele will be amplified. In

this case, partial digestions should be visible for both enzymes

after gel electrophoresis. In principle, imazapyr resistance can

arise also by one-sided GT, such as ectopic GT, which has been

found in other DSB induced GT studies before (Wolter et al.,

2018; Wolter and Puchta, 2019). In this case, the information is

copied from the genomic SuRB locus into the vector, which later

integrates elsewhere into the genome. In consequence, a third

ectopic ALS copy is present beside the two unchanged WT alleles.

We can discriminate between one-sided and perfect GT events if

both the osG and the pG amplification products contain the

desired mutations for the imazapyr resistance and, depending on

conversion tract length, the mutation changing the restrictions

site(s). This is clearly the case for sample ttLb-1. In this case,

digestions of the osG as well as the pG fragment show that the

BglII site was removed and the XhoI introduced in one of the two

genomic alleles. Sample ttLb-2 represents an example of an

ectopic GT event. Here, only the digestions of the osG amplicon

reveal the desired changes in the restriction fragments. In

contrast, pG reveals that both alleles of the target locus were

not changed. However, as shown for sample ttLb-3, CAPS

analysis might not be able to discriminate GT from WT if the

conversion tract is too short for co-converting the restriction site

mutations. However, we confirmed by sequence analysis of pG

that ttLb-3 is a perfect GT event which introduced the herbicide

resistance mutation S647T and the silent mutation to block

cutting in the SuRB ORF. Sample ttLb-4 shows a biallelic GT event.

Table 1 Gene targeting efficiencies

Construct Inoculated cotyledons Imazapyr-resistant calli GT efficiency (%) Perfect GT events Ratio of perfect GT/all GT (%)

exp 1† ttLb 16 2 13 2 100

Sa-3sg 16 2 13 2 100

Sa-at 16 1 6 0 0

exp 2 ttLb 42 12 29 6 50

Sa-3sg 71 8 11 4 50

Sa-at 72 7 10 5 71

exp 3 ttLb 31 10 32 7 70

Sa-3sg 22 1 5 0 0

Sa-at 22 1 5 1 100

exp 4 ttLb 39 4 10 3 75

ttLb‡ 23 3 13 2 67

sum ttLb 151 31 21 20 66

Sa-3sg 131 11 9 6 50

Sa-at 135 9 7 6 67

†Traditional culture in plate at first 4 weeks.
‡Tissue-culture performed at 28 °C.
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Here, both the osG and the pG amplification products carry only

the modification copied from the targeting vector and no wild-

type SuRB allele is present anymore.

For all lines, both the osG and pG PCR products were Sanger

sequenced. Figure 3c shows a representative example with

overlapping spectrums resulting from a heterozygous plant with

one wild-type SuRB and one GT-modified SuRB allele.

The results of the molecular analysis of all herbicide-resistant

calli are summed up in Table 1. All resistant calli, independent of

the length of the conversion tract, contained at least one

herbicide-resistant mutation, either W568L or S647T. If at least

one of these mutations was present at the target locus, as

determined by sequencing of the pG amplification product, the

respective callus was classified as a perfect GT event. If we sum up

all events, more than half of the events obtained with SaCas9 as

well as about two thirds obtained with ttLbCas12a turned out to

be perfect GT events. This ratio is somewhat higher than for

Arabidopsis, where perfect events could be identified in about

half of the cases using SaCas9, LbCas12a or ttLbCas12a (Merker

et al., 2020; Wolter et al., 2018; Wolter and Puchta, 2019).

Others also reported low rates of perfect targeting events in

Arabidopsis (Shan et al., 2018).

Due to the mutations introduced in the SuRB gene, we could

also estimate the conversion tract length of the DSB repair

reaction. The data are shown in Figure 4. The herbicide confer-

ring mutation closest to the DSB site, S647T in the case of the ttLb

construct and W568L in the case of the Sa-3sg and Sa-at

constructs, was found in all GT events. Our analysis shows that

the second amino acid substitution was not co-converted in all

samples (Figure 4a). For ttLb-mediated GT events, 6 of 31 events

did not contain W568L. For Sa-3sg-mediated GT events, 2 of 11

events did not contain S647T and for the Sa-at 1 of 9 events. To

get an estimate about the mean length of the conversion tract,

we drew x/y plots, setting the DSB site as zero point, the distance

to DSB site as x value for each nucleotide modification, the

percentage of incorporation as y value, to draw the regression

line (Figure 4b-d). For ttLb, the DSB site was defined to be

between the 22nd and the 23rd nucleotide downstream of the

PAM. In ttLb-mediated GT events, the S647T modification was

converted in 100% of the events, but the mutations removing the

BglII site and adding the W568L modifications were only present

in about 80% of the GT events. Using the x/y values of S647T to

W568L, we can therefore estimate that for ttLb there is a

reduction of incorporation efficiency of about 8% per 100 bp

(Figure 4e). For Sa-3sg, this value is also about 8% per 100 bp,

estimated from W568L to S647T. This pattern can easily be

explained by the synthesis-dependent strand annealing (SDSA)

pathway model, as the probability of reinvasion of the newly

Figure 3 Analysis of GT events by CAPS assay and Sanger sequencing. (a) Two PCR reactions are used to confirm GT and discriminate between perfect GT

or ectopic GT. The osG amplicon was used to confirm HR at the 50 homology and the pG amplicon was used to confirm HR at both the 50 and 30

homologies. The BglII site only exists in genomic SuRB and the XhoI site only appears in the GT donor. (b) CAPS assay shows different types of GT events:

ttLb-1, perfect GT; ttLb-2, ectopic GT; ttLb-3 perfect GT with short conversion length; ttLb-4, biallelic perfect GT. (c) A representative Sanger sequencing

result of the amplicon pG showing heterozygous GT and wild-type sequences in the chromatogram of the ttLb GT event ttLb-9.
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extended 30 end after copying from the target rises with length of

the newly synthesized strand (Figure 4f).

The analysis of Sa-at-mediated GT events also indicates that

heterologies close to the DSB might be tolerated and can be

integrated into the target locus with reasonable efficiency.

Although the 240 bp long Arabidopsis sequence located

between W568L and S647T only has 72.5% identity between

vector and target, in 8 out of 9 cases it was still copied into the

target. Interestingly, one GT event only contains the W568L

mutation, showing that in principle a 14 bp homology behind the

mutation seems to be able to complete this perfect GT event. Sa-

at contains two synonymous changes at positions Leu447 and

Thr477 on the other proximal side of the DSB. Here, more than

half of Sa-at-mediated GT events contain the synonymous change

at Thr477, while the synonymous change at Leu447 is present

only in a third of the events. Using the x/y value of W568L to

Thr477, the reduction of incorporation rate per 100 bp is around

20% (Figure 4d,e). These values were further used to estimate

the maximal mean conversion tract length, which is 0.6 kb in the

region between W568L to Thr477 of Sa-at. In ttLb and Sa-3sg-

mediated GT, the lengths are around 1.2 kb and 1.3 kb,

respectively. The conversion tracts at both flanking regions of

the DSB could be explained by exonucleolytic degradation of the

genomic DNA ends between DSB induction and strand invasion

(Figure 4f).

Heritable GT events and T-DNA integration-free GT
events

In principle, in our setup, GT events could occur by transient

expression of the nuclease as well as the kanamycin resistance

gene on the T-DNA and without its later integration into the

genome. To determine how many GT events we obtained which

did not have any genomic T-DNA integration, we designed five

primer pairs: one for the kanamycin resistance gene, two for

ttLbCas12a, and two for SaCas9 (Table S1). Our positive control

was an amplified genomic SuRA or SuRB sequence upstream of

the GT homology. Each genomic DNA sample was confirmed by

three independent rounds of PCR analysis to reduce false-

negative results. Only if the amplification of both the Cas and

kanamycin resistance genes were negative, these GT events were

Figure 4 Detailed characterization of the GT reaction. (a) Schematic representation of the mutations present in the different vectors and their inclusion in

the genomic SuRB locus due to targeting. (b-d) Plots to determine the respective maximal conversion tract length during the GT reactions. (e) Summary of

the results shown in b to d. (f) Gene conversion tract length is not only influenced by the efficiency of DNA synthesis during SDSA-mediated repair but also

by a putative exonuclease-mediated degradation of DSB ends before invasion.
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considered to be free of T-DNA integration. We found 29% (7/

24) of ttLb-mediated GT events that did not have any detectable

T-DNA integration and one from Sa-at.

To demonstrate that the GT events obtained in our study are

heritable, the imazapyr-resistant seedlings were transferred to the

greenhouse and grown for seed harvesting. The resulting T1

seeds were sown out onto imazapyr and kanamycin containing

medium. As expected, imazapyr-resistant seedlings in the T1

generation were detected in all lines tested (Table 2). 8 of 10 lines

revealed 3 to 1 Mendelian segregation of imazapyr resistant to

non-resistant plants, indicating a single targeted allele. Two lines

showed 100% imazapyr-resistant T1 plants, consistent with their

sequencing results from T0, indicating biallelic GT events. Two of

the tested lines did not carry any detectable Cas nuclease or

kanamycin resistance gene sequences, indicating that they were

transgene-free.

Discussion

Different cleavage outcomes by LbCas12a and SaCas9

Previous studies demonstrated that SaCas9 and LbCas12a are

quite efficient SSNs for generating mutations in tobacco

(Bernab�e-Orts et al., 2019; Kaya et al., 2016). Our analysis using

SaCas9, LbCas12a, and ttLbCas12a suggests that ttLbCas12a is

an even more efficient tool for generating NHEJ-based mutations

in the tobacco genome. So far, ttLbCas12a has only been applied

in Arabidopsis and Drosophila for gene editing (Merker et al.,

2020; Port et al., 2020; Schindele and Puchta, 2020). Here we

show that compared to LbCas12a, mutagenesis efficiency by

ttLbCas12a is increased around 2.5-fold in tobacco. The distri-

bution of deletion length is similar between LbCas12 and

ttLbCas12a, suggesting what we observed was mainly the

increase of cleavage activity. Different from the ttLbCas12a

results in Arabidopsis (Merker et al., 2020; Schindele and Puchta,

2020), we observed only a minor enhancement of mutagenesis

(Figure 1) as well as GT efficiency at 28°C compared to 22°C
(Table 1). Therefore, ttLbCas12a seems to be an excellent

alternative to Cas9 under normal cultivation conditions for

tobacco. The usefulness of ttLbCas12a applies most likely not

only to other Solanaceae but other plants in general. Moreover,

ttLbCas12a generates short deletions of several bps, identical to

the wild-type LbCas12a, which are easier to be detected by PCR

compared to single nucleotide Indels generated by Cas9.

In a previous report in Arabidopsis, LbCas12a-mediated GT

showed similar GT efficiency but a lower mutagenesis efficiency,

compared to SaCas9-mediated GT (Wolter and Puchta, 2019).

Our results now show that both mutagenesis and GT efficiencies

induced by ttLbCas12a outperform those of SaCas9 in tobacco.

We suggest that the main reason for this surprising fact is that

Cas12a, in comparison to Cas9, cleaves the DNA further away

from the seed sequence. Therefore, repeated cleavage is possible

after rejoining of the broken ends as arising minor mutations

might not always completely block gRNA binding. Thus, although

the probability of HR repair is low for each individual DSB repair

event, consecutive DSB inductions at the same site enhance the

overall probability for a successful GT event. An alternative

explanation for the higher efficiency of Cas12a in GT is that

Cas12a generates 50 staggered DNA ends, in contrast to Cas9,

which produces blunt ends. 50 overhangs have been shown

previously to induce efficient GT in green algae and human cells

(Bothmer et al., 2017; Ferenczi et al., 2017). However, as 50

overhangs produced by a paired nickase approach in Arabidopsis

could not enhance GT (Wolter et al., 2018), we favour the former

explanation.

Transformation and culture conditions

Surprisingly, only a single paper was published till now reporting

on CRISPR/Cas-mediated GT in tobacco (Hirohata et al., 2019). In

contrast to the previous study, we applied ttLbCas12a as well as

SaCas9 instead of SpCas9 and thus obtained much higher

efficiencies and a larger number of heritable events. However,

this improvement is not only due to the use of more efficient

nucleases but also due to the changes we introduced in the

transformation protocol and tissue culture conditions. There are

three major steps we regard as important for this optimization –
selection of infiltrated cotyledons, short-term treatment with

kanamycin in the first phase after transformation, as well as the

culturing of each explant individually. We directly inoculate the

agrobacteria in the tobacco germinating plates via vacuum

infiltration. Only choosing fully infiltrated cotyledons by visual

inspection for further cultivation reduces the amount of labour-

intense tissue-culture work by enriching transformed samples and

thus also GT events. We included antibiotic selection in the initial

stage of cell culture, inspired by the previous GT screening in

tomato (Danilo et al., 2019). We could not obtain GT events if we

treated the cells with imazapyr after either two weeks of

incubation without kanamycin or immediately after the 3-day

transformation period. In contrast to antibiotic resistance genes

that can be transiently expressed from the T-DNA without the

need for integration, GT-derived imazapyr resistance requires

time until HR is complete and modified ALS proteins are

sufficiently accumulated to enable cell survival in presence of

the herbicide. Furthermore, we assume that the application of

kanamycin represents a further step of enriching transformed

cells by killing cells which do not contain T-DNA. As we were also

able to obtain GT events without detectable T-DNA integration, a

genomic integration of the kanamycin resistance genes does not

seem to be a requirement for survival during this short cultivation

period under antibiotic selection.

The production of secondary metabolites, such as phenolic

compounds as part of defence responses from stressed tissues or

cells, is a general problem in plant tissue culture (Dias et al.,

2016). These browning compounds can be observed within the

callus itself. They are released into the medium as well, leading to

the death of nearby tissue. We attempted to minimize the release

Table 2 Segregation of resistance and PCR detection of T-DNA

Line Imazapyr resistance T-DNA

ttLb-3 70% (141/201) �
ttLb-4† 100% (104/104) +

ttLb-5 73% (69/95) +

ttLb-6 75% (145/194) �
ttLb-7 67% (97/142) +

ttLb-8 74% (68/92) +

Sa-3sg-1† 100% (104/104) +

Sa-3sg-2 69% (60/87) +

Sa-at-1 68% (64/96) +

Sa-at-2 75% (62/83) +

All lines are P > 0.05 by Chi-Square test of 3 to 1 segregation rate besides

biallelic GT lines.
† biallelic GT at T0 generation.
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of such toxic compounds into the medium that would trigger the

defence and stress responses of healthy tissue. Therefore, we

singled every cotyledon out and incubated them individually in a

24-well plate for a total of four weeks, two on kanamycin

medium and two on imazapyr medium. Whether this type of

culture is beneficial for generating transgenic tobacco in general

might be worth further examination.

GT events with diverse characteristics hint SDSA pathway
for gene replacement

Our GT design partially follows the ‘in planta gene targeting’

(ipGT) approach, which induces breaks flanking the GT donor

(Fauser et al., 2012). However, our method in this study differs

from the classical ipGT approach in Arabidopsis using the egg-cell

specific expression of the nuclease (Wolter et al., 2018), as we did

not select T-DNA-integrated transgenic plants first. Thus, excision

of the GT donor from the vector could occur before but also after

integration of the T-DNA. A similar approach has also been used

in rice before (Li et al., 2018; Li et al., 2020).

The molecular analysis of the GT events allowed us to better

define mechanistic details. There are several different mecha-

nisms describing subcategories of HR, namely single-strand

annealing (SSA), SDSA and double-strand break repair (DSBR).

Multiple lines of evidence have been accumulated over time that

SDSA is the major HR mechanism for GT in plants (Huang and

Puchta, 2019; Puchta, 1998). In this pathway, the DSB is repaired

by copying the genetic information from the vector into the

target locus by DNA synthesis. DSB repair is initiated by 50

resection, 30 single-stranded DNA (ssDNA) invasion of the one

break end into the donor sequence and extension of the invading

strand (Figure 4f). However, it is also possible that one 3’ ssDNA

of the homologous vector can invade the donor DNA with the

same mechanism. In our setup, this can lead to the restoration of

a functional extrachromosomal SuR gene, which might integrate

elsewhere in the genome by NHEJ. These kinds of events are

classified as ectopic targeting events, as the respective cells carry

the desired change at an ectopic position whereas the targeted

genomic locus remains unaltered. Indeed, our experiments

performed in Arabidopsis demonstrated that this class of events

occurs in about half of the cases (Merker et al., 2020; Wolter

et al., 2018; Wolter and Puchta, 2019). In our current experi-

ments, the ratio of perfect GT is somewhat higher (Table 1).

However, we are not sure if the difference is significant and

whether, if at all, it might be due to the different GT methods, as

the ipGT vector has to be chromosomally integrated before its

activation by DSB induction. In any case, our current GT protocol,

in contrast to ipGT does not require vector integration. Two lines,

ttLb-3 and ttLb-6, carry heritable GT events but without the

presence of a transgene. This is important when it comes to

practical applications. Even if plants with an integrated transgene

are not banned from the fields in a row of countries, they are

required to go through a much more cost- and time-intensive

regulation process before they can be used in agriculture.

To further characterize the SDSA pathway, we used the

presence of mutations from the GT vector in the targeted genomic

locus for estimating the maximal mean conversion tract length.

Such analysis should also give a hint on the required length of the

homologous arms for efficient GT (Figure 3e). Using the percentile

probability of gene conversion length, we estimated the predicted

maximal conversion length from our GT events. The required

lengths differ between GT constructs, ranging from 0.6 kb to

1.3 kb. Interestingly, the two synonymous modifications, both of

which reside on the left homologous arm of the Sa-at GT donor

and cannot be selected by imazapyr, were incorporated into the

genome with a lower chance indicating a selection bias. Similar

results of GT with higher gene conversion rates at the selectable

side were observed in human cells, too (Kan et al., 2014). All in all,

our results suggest that a homology length of 0.5 to 1 kb for each

end of the DSB should be usedwhen designing GT vectors. The use

of longer homologies might not be very helpful for increasing GT

efficiencies further. On the other side, it might be very difficult to

induce changes in the genome if the DSB is induced at distance of

more than 0.5 kb away from pre-designed changes.

To summarize, we could demonstrate that with ttLbCas12a,

efficient GT can be achieved in tobacco. Application of ttLbCas12a

is highly likely to further enhance other established GT systems

that used wild-type LbCas12a in rice or the geminivirus approach

in tomato (Li et al., 2020; van Vu et al., 2020). Moreover, it might

also be well suited for ipGT in maize with the help of heat shock

expression (Barone et al., 2020), which itself might also improve

ttLbCas12a activity. As well as for simple induction of mutations,

ttLbCas12a seems to be an attractive alternative to other CRSPR/

Cas nuclease used in plants by now.

Methods

Construction and cloning

Protospacers were cloned into entry vectors as previously

described (Steinert et al., 2015) and primers used for cloning

are listed in Table S1. GT donors were synthesized by BioCat

(Data S3). Constructs for mutagenesis were recombined between

entry vector and destination vector using LR Clonase II (Thermo).

The GT donor and gRNA expression cassettes were assembled

into the binary vectors with the SaCas9 or LbCas12a expression

cassette by Instant Sticky-end Ligase Master Mix (New England

Biolabs). The destination and entry vectors used, pDe-SaCas9 and

pEn-Sa-Chimera, were described before (Steinert et al., 2015).

For LbCas12a and ttLbCas12a, vectors were used as described

previously (Schindele and Puchta, 2020), only that the rubisco

terminator from pea was replaced by the rubisco terminator from

chrysanthemum (Outchkourov et al., 2003).

Tobacco transformation and culture condition

Nicotiana tabacum L. cv. Petite Havana line SR1 plants were used.

Seeds were germinated on MS medium (Murashige & Skoog,

Serva) with 3% sucrose, 0.8% agar in Petri dishes of 2 cm height

(Sarstedt AG & Co. KG), 16-hour day/night cycle. For GT,

agrobacterium strain GV3101 was used for vacuum infiltration.

The infiltration method was modified from a previous study

(Puchta, 1999). Bacterial densities of OD560 were measured to

determine the amount of agrobacterium equal to OD560 = 1 (an

optical density of 1 at 560 nm) in 50 mL. The proper amount of

bacteria was transferred to falcon tubes and centrifuged for

8 min of 5000g at room temperature, then resuspended and

washed twice with 15 mL of 10 mM MgSO4. After centrifugation,

bacteria were resuspended in 50 mL of 10 mM MgSO4 solution

with acetosyringone 100 mg/L. For each plate with two-week-old

tobacco seedlings, 25 mL agrobacterium solution was poured

into the plate. After 250 mbar vacuum for 15 min, agrobac-

terium solution was discarded, seedlings and plate were washed

twice with 25 mL sterilized H2O. Fully infiltrated cotyledons were

marked, and seedlings were incubated at 22°C for 3 days.

Afterwards, the marked cotyledons were transferred to 24-well

plates with callus-inducing medium containing kanamycin
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100 mg/L, cefotaxime 500 mg/L, and hormones, as described

previously (Salomon and Puchta, 1998). The plant material was

transferred to fresh medium every 7 days. After two weeks, plant

samples were transferred to fresh callus-inducing medium with

0.5 µM imazapyr every week. After incubating in 24-well plates

for four weeks, six to nine calli were transferred to fresh 0.5 µM

imazapyr medium in Petri dishes each week. Dead areas and

browning tissues were removed during each transfer. Shoots

were transferred to MS medium without hormones for root

regeneration. After 10–16 weeks, tissue samples from calli or T0

seedlings were taken for genomic DNA extraction.

For mutagenesis analysis, the same transformation method

was used but GV3101 was replaced by EHA105, a kind gift from

Dr. Bert van der Zaal’s lab. After transformation for three days,

marked cotyledons were transferred to callus-inducing medium

containing kanamycin 100 mg/L. Dead areas and browning

tissues were removed each week and trimmed samples were

transferred to the fresh medium.

Mutagenesis and gene targeting analysis

Both Sanger sequencing and next-generation sequencing (NGS)

reactions were performed by Eurofins. Tracking of Indels by

Decomposition (TIDE) analysis was used to determine the

efficiency of mutagenesis in each callus sample (Brinkman

et al., 2014). The target SuRB and SuRA loci were amplified by

PCR and the chromatograms of Sanger sequencing were anal-

ysed, using the sequencing trace files from wild-type as control.

We used Q5 High-Fidelity DNA Polymerase (NEB) to reduce PCR

errors during amplification. Two amplicons were sequenced by

NGSelect Amplicon 2nd PCR platform (Eurofins). The NGS results

of fastq files were analysed by Cas-analyser (Park et al., 2017),

using the common sequence from SuRB and SuRA (Data S2), and

then analysed by Excel.

Primers and amplicons used for CAPS assay and GT analysis

were listed (Table S1). After amplification, purification was

performed by the peqGOLD Cycle-Pure Kit (Peqlab). Restriction

enzymes for CAPS assay were purchased from NEB and digestion

was performed overnight at 37°C.
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