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Abstract
Key message We summarize recent progress of CRISPR/Cas9-mediated gene targeting in plants, provide recom-
mendations for designing gene-targeting vectors and highlight the potential of new technologies applicable to plants.
Abstract Gene targeting (GT) is a tool of urgent need for plant biotechnology and breeding. It is based on homologous 
recombination that is able to precisely introduce desired modifications within a target locus. However, its low efficiency in 
higher plants is a major barrier for its application. Using site-specific nucleases, such as the recent CRISPR/Cas system, GT 
has become applicable in plants, via the induction of double-strand breaks, although still at a too low efficiency for most 
practical applications in crops. Recently, a variety of promising new improvements regarding the efficiency of GT has been 
reported by several groups. It turns out that GT can be enhanced by cell-type-specific expression of Cas nucleases, by the use 
of self-amplified GT-vector DNA or by manipulation of DNA repair pathways. Here, we highlight the most recent progress 
of GT in plants. Moreover, we provide suggestions on how to use the technology efficiently, based on the mechanisms of 
DNA repair, and highlight several of the newest GT strategies in yeast or mammals that are potentially applicable to plants. 
Using the full potential of GT technology will definitely help us pave the way in enhancing crop yields and food safety for 
an ecologically friendly agriculture.
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What is gene targeting?

Gene targeting (GT) is a technology utilized to enable 
genome modifications through homologous recombina-
tion (HR) (Paszkowski et al. 1988). HR is an endogenous 
mechanism that functions to restore damaged DNA or to 
trigger crossovers between homologues during meiosis. 
However, HR activity is low in higher plants. As a result, 
GT techniques are rarely applied—neither in basic scientific 
research nor in biotechnology. This is mainly due to the fact 
that higher plants predominantly use the non-homologous 
end joining (NHEJ) pathway for DNA repair in somatic cells 
(Puchta 2005). NHEJ is an error-prone DNA repair mecha-
nism that tends to cause mutations which are not predicable 

on the sequence level. It was shown some time ago that site-
specific nucleases are able to induce double-strand breaks 
(DSBs) at particular loci and stimulate both NHEJ (Salomon 
and Puchta 1998) and HR-based GT (Puchta et al. 1996). 
Site-specific nucleases based on the CRISPR/Cas system are 
the most important development in recent biotechnology for 
genome engineering due to their ease in application (Schin-
dele et al. 2018). Several studies demonstrate the application 
of site-specific nuclease-enhanced GT in many important 
crops, such as rice, maize and wheat (Endo et al. 2016; Gil-
Humanes et al. 2017; Li et al. 2018a, b; Sun et al. 2016a; 
Svitashev et al. 2015, 2016; Wang et al. 2017). This review 
will highlight recent progress of GT in plants and combine 
it with previous knowledge of HR to provide recommenda-
tions for GT designs.
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Cellular components influence gene 
targeting

Over the years, various approaches have been used to 
enhance GT efficiencies in plants, that have been exten-
sively reviewed (Puchta and Fauser 2013; Steinert et al. 
2016; Sun et al. 2016b). Here, we focus on the most recent 
developments in manipulating DNA repair pathways for the 
improvement of GT techniques in the future.

Across several kingdoms, a number of studies demon-
strated that GT or HR efficiency can be increased by block-
ing the NHEJ pathway or enhancing the HR pathway. In 
Arabidopsis, mutants of ku70 and lig4 were reported to 
have higher GT efficiencies, with up to a 19-fold increase 
(Qi et al. 2013). Similarly, using CRISPR/Cas9 to knockout 
Ligase 4 altogether with GT approach achieved enhanced 
GT in rice (Endo et al. 2016). As an alternative strategy, it 
was shown that overexpression of some heterologous pro-
teins involved in HR repair enhanced GT effectively, such as 
overexpressing the RAD54 protein of yeast in plants (Shaked 
et al. 2005). Overexpressing Arabidopsis RAD54 specifi-
cally in egg cells increased GT in Arabidopsis by tenfold 
(Even-Faitelson et al. 2011). Interestingly, expression of the 
bacterial RecA stimulated intrachromosomal HR but not GT 
(Reiss et al. 1996, 2000).

On the other hand, recent experiments in mammalian 
cells indicate that the blocking of NHEJ might not always 
lead to enhanced GT events. Polymerase Q, a main factor 
of microhomology-mediated NHEJ, also mediates T-DNA 
integration in Arabidopsis (van Kregten et al. 2016). In 
mammalian systems, a cell line in which both ligase 4 and 
polymerase Q were knocked out, did not show an increase 
of GT events but showed no random integration of GT-vec-
tors in comparison with the wild-type cell lines (Saito et al. 
2017; Zelensky et al. 2017). These experiments, although no 
DSB was induced in the target locus, nevertheless, indicate 
that depending on the GT efficiency calculating method, the 
ratio of GT to random integration events can be increased by 

blocking NHEJ-mediated events without a real enhancement 
of HR-mediated events.

There is another downside to when DNA repair mutants 
are used or HR proteins are over-expressed: genomic insta-
bilities will be induced in these cells and the respective 
transgenes or mutations have to be removed via additional 
steps such as backcrossing, thus limiting the usefulness of 
these methods. One might consider transient approaches 
such as gene silencing to suppress genes without causing 
permanent modifications of the genome. Nowadays, the 
developing toolbox of CRISPR/Cas provides more possi-
bilities to suppress NHEJ pathways and promote HR path-
ways: a dead Cas9 fusion with a transcription suppressor or 
activator can be used to suppress or enhance mRNA expres-
sion, respectively, via binding to the promoter region (La 
Russa and Qi 2015). CRISPR/Cas13, a type of RNA-guided 
RNase, is able to post-transcriptionally control gene expres-
sion (Abudayyeh et al. 2017); however, it has not been uti-
lized to facilitate GT in plants thus far (for review see Wolter 
and Puchta 2018). If we are able to successfully integrate 
previous knowledge of DNA repair pathways with GT, these 
advancing techniques will prove to be powerful tools for 
genome engineering in the future.

Evidence has accumulated that GT efficiency is influ-
enced by the cell cycle. In the G1 phase of yeast and human 
cells, the NHEJ pathway is the dominant repair system 
for DSBs, whilst HR repair is more active in the S and 
G2 phases (Ferreira and Cooper 2004; Mao et al. 2008). 
Moreover, it has been demonstrated that GT efficiencies are 
higher in the G2/M cell cycle phase in human pluripotent 
stem cells, and in the S-phase of Saccharomyces cerevisiae 
and several other fungi (Tsakraklides et al. 2015; Yang et al. 
2016). The influence of the cell cycle on GT efficiency might 
be caused by various factors, from changes in chromatin 
structure to activation of DNA repair during replication. 
The accessibility of DNA can have a dramatic influence on 
GT, which was demonstrated following a mutation in the 
chromatin assembly factor FAS1, resulting in increased HR 
frequencies (Endo et al. 2006; Kirik et al. 2006). Similarly, 
GT efficiency is also influenced by cell type. Taking mouse 
as an example, their embryonic stem cells exhibit substantial 
GT, with efficiencies up to 100% (Miura et al. 2018; Quadros 
et al. 2017); however, GT efficiency in somatic cells still 
remains low. Although the influence of cell cycle and cell 
types affects GT, the detailed roles of these factors on GT 
remain unclear in plant cells. Recent reports revealed that 
the egg cell of Arabidopsis could be an excellent cell type to 
perform GT, which could achieve promising frequencies of 
inheritable GT events (Miki et al. 2018; Wolter et al. 2018).

Fig. 1  Recommended design for CRISPR/Cas9 target site mutation. a 
The three major categories of GT-mediated genome modifications—
insertion, replacements, substitutions. b–d To prevent GT-vector 
DNA and final GT products being cut by Cas9, the Cas9 targeting site 
has to be eliminated either by insertion (b), modification of the PAM 
sequence (c) or by changes in the protospacer-binding sequence (d). 
The mechanism of GT according to the SDSA. Using the design in c 
as an example, only one strand directly induced by Cas9 has the per-
fect homology for SDSA pathway, but another strand does not (e–g). 
The ideal strand has a perfect homologous region for strand invasion 
and will end up with the desired modification in the target site (e). 
This non-ideal strand initiates strand invasion within its homology, 
but will not end up with a modification in the target locus (f). If DNA 
degradation occurs naturally, and the homologous region is exposed, 
SDSA pathway-mediated GT is still possible (g). Dash-line: newly 
synthesized DNA

◂
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Recommended design for CRISPR/Cas9 
target site mutation

Schematically, GT-mediated genome modifications can 
be classified into three categories—insertions, replace-
ments and substitutions, although classification can be flu-
ent (Fig. 1a). Insertions add additional sequences into the 
genome. An example of this is the introduction of GFP tags 
into open reading frames used for tracking proteins micro-
scopically. Replacements remove long stretches of genomic 
sequences and replace them with desired sequences, for 
example, a weak wild-type promoter can be replaced by a 
stronger or a constitutive one. The last kind of change, sub-
stitutions, introduces only minor changes into the genome, 
such as single-base exchanges that result in amino acid 
substitutions. Since the rapidly advancing quantitative trait 
locus (QTL) mapping techniques are extensively used to 
identify QTLs of many beneficial traits, using GT can help 
introduce these QTLs, especially SNPs, into various impor-
tant agricultural cultivars of the same species, saving the 
time required for crossing in traditional breeding practices. 
In addition, some combinations of beneficial traits might not 
be achievable via crossing due to their genetic position on 
allelic chromosomes. Moreover, it is worth to mention that 
the CRISPR/Cas-derived base-editor technology, through 
deamination of cytidines or adenines, is able to achieve 
single nucleotide substitutions within the genome of crops 
(Kim et al. 2017; Li et al. 2017, 2018b; Zong et al. 2017), 
which could be a valuable alternative of GT.

When it comes to the detailed planning of GT experi-
ments, one has to take a number of problems into considera-
tion. While sequence-specific DSBs are the most effective 
method to increase GT efficiencies, an issue arises to prevent 
the GT-vector and GT-modified genome from destruction by 
unintended DSB induction. Using GT experiments with an 
insertion, for example, we depict several possibilities when 
Streptococcus pyogenes Cas9 (SpCas9) is used in Fig. 1. 
First, if the insertion site is positioned next to the Cas9 tar-
geting site, including the protospacer adjacent motif (PAM) 
region which is NGG for SpCas9, the Cas9 target site is 
simply eliminated due to the inserted sequence (Fig. 1b). 
Alternatively, if the SpCas9 targeted region and PAM region 
is not overlapping with the inserted sequence, one has to 
modify the PAM sequence (e.g. NGG to NCG) in the GT-
vector (Fig. 1c). From PAM sequence activity assays of 
SpCas9, we know most changes from a G to an A, or a T to 
a C are sufficient to remove cleavage activity, but one should 
avoid the use of NAG because this is an active but weaker 
PAM sequence for SpCas9 (Hsu et al. 2013). It is also rec-
ommended to apply Staphylococcus aureus Cas9 (SaCas9) 
in GT. In Arabidopsis, SaCas9 displays more efficient 
mutagenesis via DSB-based gene editing (Fauser et al. 2014; 

Steinert et al. 2015). Similarly, SaCas9-mediated GT showed 
higher GT efficiency than with the application of SpCas9 
(Schiml et al. 2014; Wolter et al. 2018). These results are in 
line with a recent biochemical study showing that SaCas9 
has a much higher reaction turnover than SpCas9 (Yourik 
et al. 2019). Following analysis in plants, it was reported that 
the targeting efficiency of SaCas9 is much lower with non-
canonical PAMs (Kaya et al. 2016); therefore, modifying 
PAM sequences other than the canonical PAM (NNGRRT) 
is feasible to hinder SaCas9 targeting within the GT-vector. 
However, the Cas9-targeted region can also be removed via 
modification of the protospacer recognizing region com-
plementary to the single-stranded guide RNA, by the intro-
duction of several nucleotide changes (Fig. 1d). In general, 
modification of the PAM region is the most effective way 
to eliminate DNA cleavage activity of Cas9. However, we 
recommend to construct the GT-vector sequence in such a 
way that all newly introduced mutations are on only one end 
of the DSB site in the target locus (Fig. 1c, d). This recom-
mendation is based on our understanding of GT and HR 
mechanisms in plants. It had been demonstrated that during 
GT using T-DNAs as the template, most DSBs are repaired 
by the SDSA pathway in plant somatic cells (Puchta 1998). 
The same mechanisms also operate when an intrachromo-
somal homology is used for repair (Orel et al. 2003). This 
synthesis-based DNA repair consists of 5′ end resection, 
homology searching and 3′ end invasion for priming and 
elongation of the repair template (Fig. 1e, g). When the DSB 
is induced by Cas9, the two ends of the DSB are resected and 
become single-stranded DNAs (ssDNA) with free 3′ ends. 
A 3′ end which is homologous to the GT-vector sequence 
will displace one strand of the GT-vector DNA, forming 
the displacement loop (D-loop) (Fig. 1e, f). This process is 
called 3′ end invasion. Afterwards, this invading 3′ ssDNA 
is used as a primer for elongation, replicating the sequence 
information from the GT-vector DNA. Subsequently, the 
new synthesized ssDNA dissociates from the D-loop. As 
this strand now contains homology to the other DSB end, 
reannealing and bridging the break is thus possible. There-
fore, following further elongation and ligation, a modified 
target incorporating the sequence information of the GT-
vector is obtained. This mechanism is different from clas-
sical crossover events between homologous chromosomes 
during meiosis, as no resolution of recombination intermedi-
ates by nucleases is required (Puchta 2005). However, 3′ end 
DNA might be trimmed by additional degradation of DNA 
(Fig. 1g). Depending on which 3′ end is invading, HR could 
merely lead to the repair of the break (Fig. 1f) or successful 
GT (Fig. 1e, g).

What would happen if we design modified sequences at 
both flanking sites corresponding to the DSB? In Fig. 2a, 
we depicted this scenario showing two potential outcomes 
(Fig. 2b, c). First of all, both resected 3′ ssDNA ends would 



Plant Cell Reports 

1 3

not have perfect homology to the GT-vector. These heterolo-
gies would reduce the efficiency of both homology searching 
and D-loop formation. Even if 3′ end invasion occurs cor-
rectly and the sequence information is successfully copied 
to the target site, either the original PAM sequence may be 
retained (Fig. 2b) or the insertion would not be copied from 
the GT-vector to the target site (Fig. 2c). Without modi-
fication of the PAM sequence within the target, the Cas9 
would be able to generate a DSB at this GT event, risk-
ing additional mutagenesis within the target. Furthermore, 
another possibility is that only the modified PAM would be 
copied to the target site. Ultimately, the desired insertion 

would not be incorporated into the target genomic locus. 
Therefore, we do not recommend designing the PAM and 
insertion mutations in the GT-vector on opposite ends rela-
tive to the DSB site of the target. However, a GT event which 
includes both modifications is possible: the initial free 3′ 
DNA generated via Cas9 cleavage might also be degraded 
or resected like a 5′ DNA strand, similar to the degradation 
shown in Fig. 1g. This resected 3′ single-stranded DNA can 
use the SDSA pathway to incorporate all sequence modifica-
tions. Currently, the influence of heterologies in GT-vector 
remains elusive in plants, leaving this question open for 
future experimentation.
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Aberrant GT due to a combination of HR 
and NHEJ

One has to keep in mind that due to the fact that the SDSA 
is the prevailing mechanism of homologous DSB repair in 
somatic cells, even if a reaction is initiated by the invasion 
of a homologous 3′ end, as depicted in Fig. 1, there is no 
necessity that HR occurs at the other end of the DSB, too. 
Using a GT-mediated insertion as an example (Fig. 3a), 

if the correct ssDNA is used for 3′ end invasion (Fig. 3b) 
and followed up by a template switch event, this two-side 
GT event creates the ideal modification in the target locus 
(Fig. 3c). Alternatively, second end capture might also be 
achieved by NHEJ with unpredictable outcomes in terms 
of modifications (Fig. 3d). Early on in DSB-induced GT 
experiments in plants, besides perfect events by HR, events 
were also found in which one junction was repaired by HR 
and the other by NHEJ (Puchta et al. 1996). Using T-DNAs 
that contained homology to only one end of the break 
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genome modification (c), but if the DNA reanneals to the genomic 
target site via NHEJ, an unpredictable sequence outcome at one side 
of the DSB takes place (d). If the initial 3′ DNA end of the GT-vector 
is invading the target locus, this recombinant fragment might later 
integrate elsewhere, at an ectopic site in the genome by NHEJ (e)
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actually enabled integration with almost the same efficiency 
as T-DNAs that carried homologies to both ends (Puchta 
1998). Another class of events has also been found that are 
due to a combination of HR and NHEJ, as it is also possible 
that the 3′ end of the vector DNA is invading the target site 
(Fig. 3e). Thus, homologies are copied from the target to the 
vector at one or the other of its ends. In a second independ-
ent step, this vector integrates elsewhere at an ectopic site 
within the genome, by NHEJ. This process is also referred 
to as ectopic targeting (e.g. Hanin et al. 2001). Therefore, 
it is definitely required to investigate the modified loci after 
GT in detail, e.g. sequencing the complete modified locus, 
to prove that the both newly formed junctions arose via HR 
at the target locus.

GT in specific cell types, organs 
or developmental stages

For plant genome engineering, the major purpose is to 
obtain heritable genome modifications. Therefore, acquir-
ing ubiquitous genome modifications in any cells of a plant 
are unnecessary and might even be unfavorable for plant 
growth due to toxicity of DSBs or the malfunction of target 
genes. Moreover, ubiquitously-expressed promoters might 
not be strong promoters in germline cells; for example, the 
most frequently used 35S promoter in plants is actually lack-
ing strong activity in meristem or reproductive organs in 
Arabidopsis (Ge et al. 2008). Several applications of using 
germline-specific promoters for plant genome modifications 
were reported in recent years. These promoters that induce 
transcription in the meristem, sporophyte, female gameto-
phyte or male gametophyte were used to drive the expres-
sion of site-specific nucleases. Applying egg-cell-specific 
promoters to induce Cas9-mediated DSBs successfully 
enhanced the efficiency of mutagenesis (Mao et al. 2016; 
Wang et al. 2015; Yan et al. 2015). Very recently, two inde-
pendent studies applied the EC1 transcriptional cassette for 
performing GT in Arabidopsis and successfully enhanced 
the efficiency drastically, in comparison with ubiquitous 
promoters or other germline-specific promoters (Miki et al. 
2018; Wolter et al. 2018). The underlying reasons as to why 
an egg-cell promoter-driven Cas9 exhibits higher efficiencies 
for both gene editing and GT are not clear; however, it could 
simply be due to the fact that any stably induced genetic 
change within the egg-cell genome will be transferred to the 
germline, with 100% efficiency.

Furthermore, meristem-specific promoters from YAO55, 
CDC45 and CLAVATA3 (CLV3, AT2G27250) were also 
compared to the egg-cell promoter, in terms of their per-
formance in GT efficiency (Miki et al. 2018; Wolter et al. 
2018). The CLV3 and CDC45 promoters did not produce 
any inheritable GT events, and although YAO produced few 

GT events resulting in herbicide resistant seedlings (0.08%), 
this efficiency was even lower than for the Ubiquitin pro-
moter (0.3%) (Wolter et al. 2018). Taking the results with the 
egg-cell promoter into account, it is now of particular inter-
est to also test the male gametophyte for GT. Unfortunately, 
the pollen-specific promoter, Lat52, did not result in any 
GT events (Miki et al. 2018), and a Lat52 promoter-driven 
Cas9 did not perform efficient gene editing mutagenesis 
(Mao et al. 2016). Intriguingly, the expression profiles are 
somehow parallel between EC1 in female gametophytes and 
Lat52 in male gametophytes at the mature stage. The GUS 
reporter lines for the Lat52 promoter showed pollen-specific 
activity but no activity in immature anthers, which contain 
only tetrads and mononucleate microspores (Twell et al. 
1990). In parallel, EC1-encoded peptide function in sperm 
cell activation for fertilization in egg cells (Sprunck et al. 
2012). These could be taken as a hint that mature female 
gametophytes may have a more efficient HR DNA repair 
system than male gametophytes.

Interestingly, detection of homozygous GT seedlings was 
reported for the use of the egg-cell promoter in the T2 gen-
eration (Miki et al. 2018). One possibility for this is that 
GT happened directly during egg-cell transformation by 
agrobacteria, in the T0 generation. Compiled evidence sug-
gests egg cells are the primary target of floral-dip mediated 
transformation in Arabidopsis (Bent 2000). The second pos-
sibility is that the EC1 promoter also possesses embryonic 
activity (Steffen et al. 2007) that might activate GT at the 
embryonic stage of either T1 or T2 generations, generating 
biallelic GT plants. However, homozygous GT seedlings 
have to be examined with care as the detection of homozy-
gous GT events by PCR cannot differentiate between real 
biallelic GT events and one GT allele plus a large deletion 
caused by DSB repair. One recent publication pointed out 
this kind of pitfall in that single allelic GT plus large dele-
tions could be a frequent phenomenon in mouse zygotes 
(Adikusuma et al. 2018). It is apparent that large deletions 
occur regularly during DSB repair in Arabidopsis (Kirik 
et al. 2000), and therefore, a detailed analysis confirming 
homozygous GT by segregation rates, or ultimately involv-
ing quantitative PCR, is deemed necessary.

Activation of the GT‑vector by DNA 
replication and repair

Increasing the copy number of the template DNA is a sim-
ple concept to enhance GT; however, in practice this is not 
so easy. One innovative approach became popular amongst 
plant scientists during recent years with the application of 
geminivirus replicons as GT-vectors for HR, initially devel-
oped in the group of Dan Voytas (Baltes et al. 2014; Cer-
mak et al. 2015; Dahan-Meir et al. 2018; Gil-Humanes et al. 
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2017; Hahn et al. 2018; Pater et al. 2018; Wang et al. 2017). 
The delivery of a modified virus replicon can be achieved 
by putting the essential proteins and DNA sequences onto 
a T-DNA and subsequently delivering them via Agrobac-
teria. In doing this, Rep/RepA proteins, and LIR and SIR 
sequences can be bought into plant cells. This method was 
used to target a transcription factor or introducing herbicide 
resistance in tobacco and tomato (Baltes et al. 2014; Cermak 
et al. 2015).

In dicots, most studies use bean yellow dwarf virus 
(BeYDV) as a tool for GT. An early application of gemini-
virus replicons in tomato used both TALENs and CRISPR/
Cas9 to replace the promoter of the transcription factor 
ANT1 with the strong 35S promoter, resulting in the accu-
mulation of anthocyanin and thus purple callus and seed-
lings (Cermak et al. 2015). In another study, an extremely 
high GT efficiency was reported, without the use of a selec-
tion marker, causing the restoration of tomato fruit color 
from mutant to wild type (Dahan-Meir et al. 2018). BeYDV-
expressing cassette was also used to restore the function of 
pre-integrated GUS and NPTII genes in tobacco (Cermak 
et al. 2017). In monocots, wheat dwarf virus (WDV) was 
also used for geminivirus-facilitated GT approaches. Using 
wheat protoplast systems, the GT events can be quantified 
to around 1% efficiency, without pre-integrated DNA (Gil-
Humanes et al. 2017); however, these GT wheat protoplasts 
were not regenerated to establish intact plants. The appli-
cation of WDV in rice thus demonstrated the possibility 
of achieving GT events via geminivirus replicons, using 
biolistic transformation, although no heritable change was 
reported (Wang et al. 2017). It seems that there are multiple 
reasons as to why the enhancement of GT using the viral 
GT-vector occurs. This can be because in addition to virus 
replication increasing vector copy numbers, Rep/RepA also 
influences the cell to enter nuclear DNA replication (Orozco 
et al. 2000), which may also enhance GT itself. Moreover, 
replication itself might also activate the DNA template for 
repair. Recent results indicate that during DNA repair, dam-
aged DNA might be transferred to repair loci at the nuclear 
periphery, by the action of nuclear actin and myosin (Caridi 
et al. 2018). This might also be the reason why the “in planta 
gene targeting” strategy is also improving GT efficiencies, as 
in this case DSBs are not only induced at the GT locus but 
are also used for cleaving and releasing the GT-vector from 
the genome (Fauser et al. 2012; Hahn et al. 2018; Schiml 
et al. 2014; Wolter et al. 2018). With this being said, two 
reports indicated that the geminiviral approach might not 
be applicable to all dicots. For example, in Arabidopsis, 
all reported approaches failed to significantly enhance GT 
(Hahn et al. 2018; Pater et al. 2018), despite replication of 
the BeYDV replicon being detectable.

New technologies applicable to GT in plant

The fast-growing use of the CRISPR/Cas system opens up 
a new era of applications in genome engineering in vari-
ous model organisms, from prokaryotes to eukaryotes. The 
applications of CRISPR/Cas systems in various organisms 
provide several interesting approaches that are likely going 
to be also applicable in plants (Puchta 2017).

A recent innovative approach was undertaken in mam-
malian cells whereby the local concentration of a factor 
involved in the resection of DSB ends, an initial step of 
HR, was carried out. If the protein CtIP, or a fragment of 
it containing its multimerization domain, is fused to the 
Cas9 nuclease that is inducing the DSB within the target 
locus, GT frequencies can be doubled (Charpentier et al. 
2018). Another novel approach is bringing the GT-vector 
DNA within close proximity of the target site to increase GT 
efficiency. Researchers used pre-assembled CRISPR/Cas9, 
whereby CRISPR/Cas9 is covalently or non-covalently 
linked to a GT-vector DNA, forming an RNA–protein–DNA 
complex, to perform GT in mammalian models (Aird et al. 
2018; Gu et al. 2018; Ma et al. 2017; Savic et al. 2018). The 
underlying mechanism can be considered relatively simple. 
Upon the formation of a DNA DSB via CRISPR/Cas, the 
searching of a homologous sequence from the break site 
to the GT-vector, for repair, can be performed more effi-
ciently if the GT-vector DNA is in close proximity to the 
DSB. One such approach in yeast used the artificial fusion 
protein, LexA-Fkh1p, to recruit the GT-vector to the DSB, 
resulting in a fivefold increase in efficiency of GT (Roy et al. 
2018), via the action of both the protein–DNA interaction 
between the LexA protein and the Lex Operator within the 
GT-vector, and also the capability of Fkh1p recruitment to 
the DSB. Additionally performed in yeast and demonstrating 
an improvement in GT was the use of a VirD2–I-SceI fusion 
protein expressed in Agrobacterium, that can covalently bind 
to DNA, transferring DNA from bacteria to yeast, generating 
a DSB via homing endonuclease I-SceI activity (Rolloos 
et al. 2015). All of these results indicate that bringing the 
GT-vector within close proximity of the GT site might also 
have a positive effect on GT efficiency in plants.

In addition to the well-developed CRISPR/Cas9, other 
CRISPR/Cas systems, such as CRISPR/Cas12a, provide addi-
tional advantages for GT techniques. CRISPR/Cas12a, also 
known as CRISPR/Cpf1, has two different features that seem to 
be beneficial for GT, compared to Cas9. First, the induced DSB 
site is close to one end of the protospacer, far away from the 
PAM sequence. This feature possibly lets the target be cleaved 
multiple times, thus increasing the chances of GT, without 
being blocked by mutations induced by NHEJ. Second, Cas12a 
produces 5′ protruding ends following DSB induction. Indica-
tions that 5′ protruding DSB ends, produced by a paired-nick-
ase version of SpCas9, enhance the efficiency of GT in plants 
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and human cell lines to a certain extent, have recently been 
reported (Bothmer et al. 2017; Cermak et al. 2017; Wolter et al. 
2018). Utilizing CRISPR/Cas12a in rice also achieved high 
GT efficiency of up to 8% (Begemann et al. 2017), although 
the numbers of GT events obtained were too small to draw 
general conclusions. This approach is especially efficient when 
combining the pre-assembled CRISPR/Cas12a and ssDNA as 
template for GT. In green algae Chlamydomonas reinhardtii, 
the utilization of Cas12- and ssDNA-composed GT-vector 
improved the efficiency of precise GT (Ferenczi et al. 2017). 
Applying Cas12 with ssDNA as GT-vector was successfully 
carried out in rice as well (Li et al. 2018b); although we need 
further data to come to a final conclusion as to whether the 
application of Cas12 offers higher GT efficiency than Cas9.

Conclusion and perspective

In this report, we attempted to summarize the most recent 
developments that have already substantially improved GT 
efficiencies in plants. It turns out that the efficiency and 
nature of the nuclease used, at which organ the promoter is 
active, and also the nature and activation of the template, are 
all critical points. All of these improvements have led to GT 
frequencies above percent ranges, thus making it a feasible 
technology for application in plants. Combining different 
approaches, manipulating the repair machinery and bringing 
the target and vector in close proximity to one another might 
help to improve efficiencies even further. We are, therefore, 
optimistic that within the next few years, GT will become a 
routine technique for use in crop plants, just as it already is 
at present for various model animal species.
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