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Abstract Since the discovery that nucleases of the
bacterial CRISPR (clustered regularly interspaced palin-
dromic repeat)-associated (Cas) system can be used as
easily programmable tools for genome engineering,
their application massively transformed different areas
of plant biology. In this review, we assess the current
state of their use for crop breeding to incorporate
attractive new agronomical traits into specific cultivars
of various crop plants. This can be achieved by the use of
Cas9/12 nucleases for double-strand break induction,

resulting in mutations by non-homologous recombina-
tion. Strategies for performing such experiments � from
the design of guide RNA to the use of different
transformation technologies � are evaluated. Further-
more, we sum up recent developments regarding the
use of nuclease-deficient Cas9/12 proteins, as DNA-
binding moieties for targeting different kinds of enzyme
activities to specific sites within the genome. Progress in
base deamination, transcriptional induction and tran-
scriptional repression, as well as in imaging in plants, is
also discussed. As different Cas9/12 enzymes are at
hand, the simultaneous application of various enzyme
activities, to multiple genomic sites, is now in reach to
redirect plant metabolism in a multifunctional manner
and pave the way for a new level of plant synthetic
biology.
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INTRODUCTION

A major challenge for crop improvement is the limited
genomic variability within elite breeding material. Since
the 1950s, the application of genotoxic agents, such as
chemicals or irradiation, were used to induce new
alleles by random mutagenesis. This technology was
time-consuming and ineffective; multiple mutations
were introduced in the same genome, simultaneously,
and many resulted in adverse effects (Pacher and
Puchta 2017). This situation changed only when it
became possible to introduce precisely located breaks

into DNA, in vivo, by the use of site-specific nucleases.
Targeted rearrangements require transient opening of
the genetic information, with a precise cut, followed by
changes catalyzed by the cellular DNA repair machinery.
Base editing, directed transcriptional regulation and
epigenetic modifications are further developments
arising from the ability to target specific genomic sites.

This portfolio of genome modifications became
available mainly within the last decade with the
discovery of molecular effectors that: (i) can be
targeted easily to specific sequences in a genome or
transcriptome; (ii) possess intrinsic nuclease activity; or
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(iii) are modified to derivatives that deliver defined

biochemical reactions or properties to genomic loci or

transcripts. This molecular toolbox can be applied both

in plant biotechnology, to explore and expand the

genetic potential of crops as a major source of nutrition

and renewable energy, as well as facilitating

and accelerating breeding processes to increase the

economic value of products thereof.

In this review,weprovidea state-of-the-art overviewof

the available molecular tools, including their derivatives,

their properties and mode of action, their handling in

wet-lab activities and advances in plant biotechnological

applications, based on these revolutionary techniques.

We conclude with an outlook of possible future applica-

tions of these tools and considerations as to how the

existing toolset might evolve, providing unprecedented

possibilities to the growing field of plant synthetic biology.

SEQUENCE-SPECIFIC INDUCTION OF DNA
DOUBLE-STRAND BREAKS

The ability to introduce unique genomic site-specific
DNA double-strand breaks (DSBs), in vivo, dates back to
the discovery and characterization of the homing
endonuclease I-SceI in Saccharomyces cerevisiae
(Jacquier and Dujon 1985; Perrin et al. 1993). Expression
of this molecular scissor, in plants, harboring its 18mer
target sequence, led not only to fundamental progress
in the understanding of DSB repair processes, in somatic
plant cells (Puchta 2005), but also to the demonstration
that genes can be knocked out (Salomon and Puchta
1998), or genomic loci be changed in a controlled
manner (Puchta et al. 1996).The vast majority of DSBs
are repaired via non-homologous end joining (NHEJ), a
highly mutagenic mechanism of partial end-resection
and re-ligation of the free ends. Nevertheless, the
intrinsic DSB repair machinery has the potential to
remove breaks also in an error-free manner, namely
homologous recombination (HR), which utilizes allelic or
ectopic sequence homologies as a repair template. The
equilibrium between HR and NHEJ is strongly biased to
the latter in somatic plant cells, as a result of evolutionary
requirements to ensure genomic integrity in highly
complex and partially repetitive genomes (Cavalier-
Smith 2005; Puchta 2005). Thus, the knowledge of repair
pathway utilization, key factors involved therein and the
superimposed regulatory mechanisms is crucial to any

rational design aiming for efficient generation of
modified plant genomes (Puchta and Fauser 2015). So
far, both DSB repair pathways have been experimentally
addressed to obtain various genetic alterations.

The prevalent DSB repair pathway NHEJ has been
largely exploited for obtaining targeted mutations, but
furthermore, its potential to specifically invert or delete
genome fragments, break genetic linkage groups, or
reshuffle chromosome orientations has been recog-
nized (Pacher et al. 2007; Lee et al. 2012; Le Cong et al.
2013; Li et al. 2013; Mali et al. 2013; Wang et al. 2013;
Weinthal et al. 2013; Filler Hayut et al. 2017). In addition,
HR-mediated DSB repair has been applied for targeted
sequence alterations (Steinert et al. 2016). This has been
achieved by making use of recombination substrates,
such as extrachromosomal templates provided, for
example, via an incoming T-DNA from Agrobacterium
tumefaciens, transfected plasmids, biolistic delivery of
DNA sequences, or delivery by viral replicons (Baltes
et al. 2014; �Cerm�ak et al. 2015; Butler et al. 2016; �Cerm�ak
et al. 2017; Gil-Humanes et al. 2017). Both the controlled
introduction of very minor sequence modifications and
the insertion of new genes in transgenic and natural loci
have also been achieved with the in planta Gene
Targeting (GT) method (Fauser et al. 2012; Fauser et al.
2014; Wolter et al. 2018), in combination with the use of
viral replicons (Dahan-Meir et al. 2018), or in combina-
tion with developmentally-controlled promoters (Miki
et al. 2018; Wolter et al. 2018).

While initial efforts for targeted genome rearrange-
ments, applying rare cutters like I-SceI, were limited by
the need of artificially inserting the target site as part of
a transgene, the development and availability of
engineered zinc-finger nucleases (ZFN) (Kim et al.
1996; Smith et al. 2000), transcription activator-like
effector nucleases (TALENs) (Boch et al. 2009; Moscou
and Bogdanove 2009; Cermak et al. 2011) and, most
recently, the CRISPR (clustered regularly interspaced
palindromic repeat)-associated (Cas) system, enabled
the generation of new genome engineering tools for
addressing nearly all genomic loci with unprecedented
accuracy and efficiency (Voytas 2013; Mahfouz et al.
2014; Belhaj et al. 2015; Schaeffer and Nakata 2015; Lee
et al. 2016; Weeks et al. 2016; Pacher and Puchta 2017;
Puchta 2017; Schindele et al. 2018).

The availability of such new tools not only allowed
the development of a better understanding of DNA
repair pathways (e.g. Schiml et al. 2016), but also

1128 Kumlehn et al.

December 2018 | Volume 60 | Issue 12 | 1127–1153 www.jipb.net



provided means for generation of more than one
defined break, simultaneously, within a genome to
induce more complex changes, such as deletions,
inversions and translocations. The following section
provides a state-of-the-art overview on the tool set,
its intrinsic properties and artificially designed deriva-
tives thereof, for enhancing the possibilities of plant
synthetic biology.

CLASSES OF CAS-ENDONUCLEASES

Clustered regularly interspaced short palindromic

repeats and the Cas proteins form a prokaryotic

defense mechanism against bacteriophages and mobile

genetic elements (Wiedenheft et al. 2012). This adaptive

immune system is able to integrate fragments of

the invading genomes, as so-called spacers, in the

CRISPR array and provides a sequence-based memory

of previous infections (Hille and Charpentier 2016;

Barrangou and Gersbach 2017; Murugan et al. 2017).

Two proteins, Cas1 and Cas2, are essential for most

CRISPR/Cas systems to deliver the foreign DNA frag-

ments to the CRISPR array (Koonin et al. 2017). During

the second infection, the CRISPR locus, encoding the

effector Cas proteins and spacers, is transcribed into

the so-called precursor crRNA (pre-crRNA). Various

mechanisms exist to process the pre-crRNA, in the

different CRISPR/Cas systems, although they are not yet

completely understood.

Independent of the manner of processing, the

crRNA contains a spacer, which is complementary to

viral DNA and provides the target specificity of the Cas

system. The crRNA interacts with a Cas effector and

guides the effector protein accurately to the DNA or

RNA target motif, where the complex performs its

cleavage function (Jinek et al. 2012). As a consequence

of reciprocal selective pressure, a wide variety of

defense strategies against viral invaders has evolved

and therefore, there exists a high diversity of structural

varieties between the individual CRISPR/Cas systems

(Wiedenheft et al. 2012; Makarova et al. 2015).
CRISPR/Cas systems essentially comprise two clas-

ses: the most abundant CRISPR/Cas system in bacteria
and archaea is referred to as class 1, which contains
multi-subunit effector complexes and includes type I,
type III and type IV systems. Class 2 consists of three
types of single-protein effector modules: type II,

type V and type VI. Each type can also be subdivided
into several subtypes (Makarova et al. 2015; Koonin
et al. 2017). The most extensively studied Cas protein is
the single effector endonuclease, Cas9, of the type II-A
system (Jinek et al. 2012; Fonfara et al. 2014). A second
RNA-guided effector nuclease was identified with
bioinformatics studies (Schunder et al. 2013) and was
classified as Cpf1 (now Cas12a), a class 2 type V CRISPR/
Cas system (Makarova et al. 2015). Recently, three novel
class 2 effectors, C2c1, C2c2 and C2c3, were identified by
a computational pipeline (Shmakov et al. 2015). Two of
these proteins, C2c1 and C2c3, showed similarity to the
already known type V effector, Cas12a, and were
recently renamed as Cas12b and Cas12c (Murugan
et al. 2017). The third effector, C2c2 (now Cas13a),
shows a higher divergence andwas assigned to the new
class 2 type VI CRISPR/Cas system (Shmakov et al. 2015).

The RNA-guided endonuclease Cas9 of the class 2
type II CRISPR/Cas system from Streptococcus pyogenes
has become the best characterized single effector
protein and an important biotechnological tool for
molecular biology (Jinek et al. 2012). Like most class 2
effectors, Cas9 consists of two lobes. A recognition
domain (REC) is connected over an arginine-rich bridge
helix with the nuclear domain (NUC) (Jinek et al. 2014).
The NUC lobe contains two catalytically active sub-
domains, RuvC and HNH, which are required for the
induction of the DSB. The HNH domain is responsible for
the cleavage of the DNA strand that is complementary
to the spacer region of the guide RNA (gRNA), whereas
the RuvC-like domain cleaves the non-complementary
DNA strand (Jinek et al. 2012).

In order to find foreign DNA, the Cas9 nuclease
requires this gRNA, which is formed by the crRNA and a
tracrRNA and a short G-rich sequence motif, termed
protospacer adjacent motif (PAM) positioned next
to the gRNA-specific part of the target sequence
(Figure 1A). Upon formation of the Cas9/gRNA complex,
it scans the DNA for the PAM sequence. Due to the
nature of the CRISPR/Cas system, the effector protein is
able to target simultaneously multiple loci,. Upon PAM
identification, the complex separates the DNA double
strand and checks whether the spacer on the crRNA is
complementary to the sequence next to the PAM site.
After formation of a hetero-duplex, the nuclease
domains of Cas9 are activated and induce a blunt-end
DSB threebasepairs (bp) upstreamof thePAM(Garneau
et al. 2010; Jinek et al. 2012; Chaudhary et al. 2018).
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An additional well-characterized single RNA-guided
endonuclease is Cas12a (formerly Cpf1), which is assigned
to the class 2 typeVCRISPR/Cas system. Despite the same
function and nearly identical size, there are some
important differences compared to the Cas9 protein. In
contrast to Cas9, Cas12a requires a shorter crRNA and
there is no evidence that a tracrRNA is required (Zetsche
etal. 2015). Furthermore,Cas12a is able toprocess thepre-
crRNA itself (Fonfara et al. 2016). As opposed to type II
CRISPR-Cas systems, where the crRNA scaffold is located
at the 30 end, the crRNA scaffold of the type 5 CRISPR/Cas
systems is located at the 50 end (Figure 1B) (Zetsche et al.
2015). Additionally, the protein creates a DSB by DNA
cleavage distal from the PAM sequence and the seed
region, where the crRNA is more tolerant of mismatches
(Gao et al. 2016). The cleavage occurs 18 nucleotides
downstreamof the PAM, at the non-target strand, and 23
nucleotides downstream, at the target strand, which
leads to afivenucleotide 50 overhang (Zetscheet al. 2015).
Presumably the overhang is due to the sole cleavage
activity of the RuvC-domain (Swarts et al. 2017). Similar to
Cas9, Cas12a also appears to have two nuclease domains,
RuvC and a Nuc domain (Yamano et al. 2016), but recent
structural analyses suggest that theNuc domain supports
DNA binding and lacks catalytic activity (Swarts et al.
2017). However, in contrast to Cas9, Cas12a requires T-rich
PAMs, which increases the total number of potential
target sites. Recently, a single-stranded DNA (ssDNA)
cleavage activity of Cas12a was discovered, whereby
Cas12a completely degrades non-specific ssDNA after
being activated upon target binding (Chen et al. 2018).

What was previously only possible in the DNA world
with Cas9 and Cas12a can now be extended into the
RNA world with the RNase Cas13. This type of Cas
protein was identified by bioinformatics analyses of
bacterial and archaeal genomes (Shmakov et al. 2015).
The programmable RNA-guided RNA-targeting CRISPR
effector, Cas13a (previously C2c2), cleaves ssRNA
molecules in a sequence-specific manner (Figure 1C)
(Abudayyeh et al. 2016). Regardless of the similar origin,
the protein shows no strong structural correlation to
the previously characterized Cas proteins. It also
displays a bi-lobed structure, but contains the NUC
lobe and two conserved higher eukaryote and prokary-
ote nucleotide-binding (HEPN) domains.

Cas13a also differs in the location of the catalytic
sites; in an activated state, the HEPN domain is located
at the external surface, whereas the nuclease domains

Figure 1. Schematic representation of the three
CRISPR Class 2 single-protein effectors, Cas9, Cas12a
and Cas13a
(A) After hybridization of the small RNAs, tracrRNA and
crRNA, a complex with Cas9 is formed. The crRNA
contains a 20 nucleotide guide sequence (Spacer) and
mediates sequence-specific DNA binding at the recog-
nition site upstream of the protospacer adjacent motif
(PAM). Subsequent to Cas9 recruitment to the target
DNA, a sequence-specific double-strand break (DSB) is
induced. (B) In contrast to Cas9, Cas12a requires only a
single crRNA for DNA targeting and the 23–25 nucleo-
tide recognition site is located downstream of the PAM
sequence. The Cas12a nuclease-induced DSB possesses
5 nt single-strand DNA overhangs, 18 to 23 nucleotides
distal and downstream to the PAM in the spacer region.
(C) The Cas13a-mediated RNA-specific cleavage activity
requires one single crRNA. Binding of the Cas13a/crRNA
complex to its target RNA is mediated by the guide
sequence of the crRNA. RNA cleavage occurs at the
catalytically active sites of Cas13a located on the outer
protein surface. (A–C) All three single-protein effectors
can be specifically directed to almost any target DNA/
RNA by exchanging the specific recognition sequences
of the crRNA.
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of Cas9 and Cas12a are located inside the protein (Liu
et al. 2017b; Wolter and Puchta 2018). Like Cas12a,
Cas13a can also process the pre-crRNA by itself and
possesses no tracrRNA (East-Seletsky et al. 2016).
Furthermore, Cas13 shows general non-specific degra-
dation of RNA, after activation, via target binding. This
function is not affected by deactivation of the HEPN
domains, indicating that there are two different
catalytic sites (East-Seletsky et al. 2016). However, the
“collateral” cleavage activity seems not to be present in
eukaryotic cells (Abudayyeh et al. 2016), making Cas13a
a suitable tool for targeting and degrading RNA in a
highly specific manner and thus, expanding the toolset
to address the transcriptome as well.

Despite the necessity of PAM sequences for Cas9 and

Cas12a, such a requirement could not be observed for

all Cas13 orthologs, but some Cas13 proteins seem to

require a PAM-likemotif, called protospacer flanking site

(PFS). This has been established so far for the three Cas13

orthologs: Cas13a from Leptotrichia wadei (LwaCas13a),

Cas13b from Prevotella sp. (PspCas13b) and Cas13d from

Eubacterium siraeum (EsCas13d) (Abudayyeh et al. 2017;

Cox et al. 2017; Konermann et al. 2018).

Taken together, the molecular tool set of sequence-

specific programmable DNA and RNA nucleases pro-

vides unprecedented possibilities for both the targeted

generation of DNA breaks, or triggering the degrada-

tion of selected RNA molecules, thereby increasing the

potential to modify genes, genome structure, or

selectively controlling the transcriptome (Schindele

et al. 2018). In the following section, we will discuss

both the applications of these targeted nucleases, as

well as derivatives thereof, which can be generated

artificially to change PAM requirements, or enhance the

specificity of protospacer recognition to reduce poten-

tial off-target cleavage. Additionally, we consider the

possibilities to target one Cas effector to more than

one locus, simultaneously, or operating different

Cas orthologs with variable modifications to induce

single-strand breaks (SSBs), or targeting fused protein

effectors to loci of interest in multiplex approaches.

SELECTION OF TARGET MOTIFS

Selection criteria
Based upon the interaction of the gRNA and Cas
endonuclease and the binding of their complex to

target DNA, there are general and sequence-specific
requirements, and preferences, to be considered when
target motifs are selected. The most decisive limitation
for the choice of target motifs derives from the
requirement of a PAM, which is the nucleotide triplet
specifically bound by the Cas endonuclease. In the
case of canonical Cas9, the PAM comprises one flexible
nucleotide, followed by two guanosine residues.
Utilizing plant species that enable reasonably efficient
genetic transformation, simple knockout approaches
are fairly straightforward. For site-directed mutagene-
sis, it may be sufficient to simply select two to three
target motifs within the coding sequence of the target
gene, with each target comprising any 21 nucleotides
upstream of a double G. However, in more challenging
approaches, such as multi-target, double Cas or repair
template-directed modifications, it is advisable to select
target motifs for which high cleavage activity of the
gRNA/Cas complex is predicted.

Secondary structure formation of the gRNA plays a
crucial role in Cas cleavage activity, because not only
must the gRNA 50 terminal part be capable of base-
pairing with the target DNA, but also the binding
between Cas endonuclease and gRNA is essentially
dependent on two-dimensional (2D) structures formed
within the gRNA 30 terminal scaffold (Ma et al. 2015b).
Online tools, such as RNAfold (rna.tbi.univie.ac.at/cgi-
bin/RNAWebSuite/RNAfold.cgi) and MFOLD (Zuker
2003), are available to predict the most likely occurring
secondary structure variants of gRNAs in silico. Taking
advantage of this opportunity, substantial interactions
between the target-compatible 50 terminal part of the
gRNA and its 30 scaffold can largely be avoided.

In Figure 2, examples of predicted 2D structures of
gRNAs with high (A) and compromised functionality (B)
are shown. The extent of intramolecular pairing of
nucleobases within gRNAs is also considered in the
validation of target motifs by online platforms specifi-
cally devoted to the use of customized endonucleases,
such as CRISPR-GE (http://skl.scau.edu.cn/) (Xie et al.
2017). Using rice as the experimental model, Liang et al.
(2016) have shown that, in efficient gRNAs, no more
than 12 nucleotides of the target-specific gRNA 50

terminal part are involved in base-pairing with the
invariable gRNA scaffold. Moreover, a maximum of
seven consecutive nucleotides of the variable part are
tolerated to pair with complementary bases of the
gRNA scaffold.

CRISPR/Cas: From breeding to synthetic biology 1131

www.jipb.net December 2018 | Volume 60 | Issue 12 | 1127–1153

rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
http://skl.scau.edu.cn/


Importantly, three stem-loops formed within the

invariable gRNA scaffold have been proven to be

essential for proper interaction of gRNA and Cas

endonuclease. By contrast, any further secondary

structures, more or less frequently occurring within

the gRNA scaffold, were not associated with high

cleavage activity of the gRNA/Cas9 complex and, hence,

can be neglected when it comes to the selection of

target motifs (Liang et al. 2016). Wong et al. (2015)

showed that a CTT triplet, residing at the position�1 to

�3 immediately upstream of the PAM, severely disturbs

the functionality of gRNAs as it is complementary and,

thus, readily base-pairs with an AAG triplet present on

the gRNA scaffold where one of its functional stem-

loops needs to be formed.
Preferences of the various nucleotide positions

along the target motifs for particular nucleobases
have been elucidated by functionally testing large gRNA
libraries, followed by the differentiation of fractions of
functional versus non-functional gRNAs, or subpopula-
tions of most efficient gRNAs (Doench et al. 2014;
Moreno-Mateos et al. 2015). Conspicuous and indepen-
dently reoccurring patterns have mostly been detected
in the immediate sequence context of the PAM that,
itself, constitutes the most striking feature of useful
gRNA/Cas target motifs. In the case of the best studied

Cas9, guanine at the position�1 upstream and cytosine
at the positionþ1 downstream of the PAMwere shown
to be associated with high cleavage activity. On the
other hand, the following nucleobases were deter-
mined to occur particularly rarely in the given positions
of efficiently cleaved target motifs: cytosine and
thymine at �1 upstream of the PAM, thymine at the
N-position of the PAM and guanine at þ1 downstream
of the PAM (Xu et al. 2015).

Inconsistent results have been published regarding a

number of features of useful target motifs, which is

likely to be due to various basic criteria for gRNA

selection, as well as to different experimental models,

with the latter having specific preferences in terms of

DNA repair mechanisms (Xu et al. 2015). For example, an

attempt to confirm nucleotide preferences of target

motifs established in various vertebrate cell systems

failed in rice, where no statistically significant associa-

tions of nucleotide composition of the target specific 50

part of the gRNA with cleavage efficiency were

observed, albeit different average occurrences of the

four available nucleobases were seen in some positions

within the target sequences of efficient versus ineffi-

cient gRNAs (Liang et al. 2016).
Likewise, there are inconsistent results as to the role

of GC content of the target-specific 50 part of gRNAs.

Figure 2. Secondary structure of single-guide RNAs
(A) Example of guide RNA with high functionality due to limited base pairing of the target-specific part and to the
presence of all three stem loop structures required to correctly interact with Cas9 endonuclease. Probability of the
individual bases to pair is indicated by a color code. (B) For comparison, a guide RNA with severely compromised
functionality, owing to a high number of paired nucleobases of the target-specific part and to the absence of an
essential stem loop structure (namely the third one according to A). The structuremodels were generated using the
RNAfold online platform (rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi).
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Whereas Wang et al. (2014), using human cells, showed
that the fractions of gRNAs featuring lower than 45 and
higher than 75% GC content of their target-specific 50

part were associated with reduced cleavage efficacy,
Gagnon et al. (2014) reported that the fraction of
significantly more efficient gRNAs in zebrafish have a GC
content higher than 50%. Using Drosophila as an
experimental system, Ren et al. (2014) showed that a
GC content of over 50% is beneficial only within the six
nucleobases positioned immediately upstream of the
PAM. Then again, Labuhn et al. (2018) reported a
significant effect of the GC content in the domain
comprising positions -8 through to�17 upstream of the
PAM in human cells.

Whereas the vast majority of approaches to

establish selection rules for target motifs have been

generated using association principles, rather than

causal relationships, some of these rules have been

validated at least using hypothesis-driven approaches,

for example on the topological interaction of gRNA and

target DNA (Xu et al. 2017).

The repair machinery preferentially uses micro-

homologies between the free ends produced by DNA

cleavage. Therefore, it is possible to take advantage of

this phenomenon to predict sequence modifications,

or even to use such patterns strategically, be it to

enhance cleavage efficiency, to preferentially obtain

in- or out-of-frame mutations, or to precisely create

particular sequence modifications (Bae et al. 2014).

Online platforms for the selection of efficient and
specific target motifs
The selection of target motifs for Cas endonucleases is
greatly facilitated by a variety of online platforms.While
WU-CRISPR (Wong et al. 2015), SSC (Xu et al. 2015),
CRISPR MultiTargeter (Prykhozhij et al. 2015), sgRNA
Scorer (Chari et al. 2015) and Desktop Genetics (Doench
et al. 2016) are particularly reliable in recommending
gRNAs and predicting their cleavage efficacy, other
platforms have been tailored for the specific require-
ments of certain organisms. For example, CRISPR-P 2.0
(Liu et al. 2017a) and CRISPR-GE (Xie et al. 2017) were
established for plants. Notwithstanding their utility, the
predictive power of these online tools is still limited,
since their algorithms have been developed based on
the association of target features with cleavage activity,
rather than on experimentally established causal
relationships. Yet another limitation is that results and

findings which are highly dependent on experimental
background conditions and cellular particularities,
cannot readily be extrapolated from one experimental
system to another.

The establishment of selection criteria for particu-

larly efficiently cleaved target motifs and the develop-

ment of computational algorithms balancing such

criteria, has resulted in the above-mentioned tools for

the prediction of useful target sites. A further improved

predictability of cleavage activity may be achieved by

the elucidation of causative relations between structure

and function. To this end, systematic comparisons of

two ormore targets that differ in just one featurewould

be required. However, owing to the limited presence of

all theoretically possible target motifs in a given

organism, and the influence of chromatin structures

and their position effects, this will be technically very

challenging. Nonetheless, it will be worthwhile to

develop experimental concepts in this particular field,

since an increased prediction accuracy of target efficacy

is key to improved and more sophisticated methods of

site-directed genome modification.

Simultaneous modification of multiple genomic
targets
Various solutions exist to expressmultiple gRNAswithin
the same cell. This principle is of particular value in
allopolyploid species where the genetic similarity,
across all partial genomes, is often not high enough
to allow for the identification of identical and useful
target motifs present in all homeoalleles of a given
target gene. Moreover, it is sometimes required to
simultaneously cut more than one target motif in the
same gene (e.g. for double nickase setups), or in two or
more target genes, to achieve multiple genetic
modifications. Approaches to the modification of entire
gene families or to pathway engineering are the most
challenging in this context.

The first approaches for the simultaneous use of
multiple gRNAs were to deliver each gRNA driven by its
own promoter (Schiml et al. 2014; Xing et al. 2014; Ma
et al. 2015b). The limitation herein is that, with a
polymerase (Pol) III promoter for each gRNA, the
required constructs become comparatively large. Three
different concepts to avoid this challenge are based on
the principle of a polycistronic gene. The expression of
multiple functional gRNAs as a polycistronic gene,
under the control of Pol II promoters in human cells,
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was tested by utilizing the RNA-binding and RNA-
endonuclease capabilities of Csy4, whereby the gRNAs
could be released from their transcript (Nissim et al.
2014). In this context, it is worthy to consider the
requirement of a second endonuclease to separate
the gRNAs, which also significantly contributes to the
length of DNA constructs. Alternatively, a polycistronic
construct was developed utilizing the endogenous
tRNA processing system in rice. The tRNA sequences
are located in between the gRNA sequences and are
necessary for the cleavage of two host RNases (Xie et al.
2015).

With the tandem-like array of self-cleaving ribo-
zymes and gRNAs, the separation of the gRNAs after
transcription is also enabled. The advantage here is that
no further components are required (Tang et al. 2016).
Flanking gRNAs with ribozymes can also be of interest
for individual gRNAs, as the gRNA does not necessarily
have to be expressed by a Pol III promoter. It will then
be possible to use Pol II promoters, which are better
studied and can also permit tissue-specific or inducible
expression (Gao and Zhao 2014).

Using a polycistronic tRNA-gRNA gene expression
strategy in rice, Xie et al. (2015) demonstrated the
simultaneous modification of as many as eight target
sites. Later, this group took advantage of the same
principle to study the roles of four stress-related
mitogen-activated protein kinases of rice, via Cas9-
mediated knockout (Minkenberg et al. 2017). Lowder
et al. (2018) took a multiplex gene activation approach
in Arabidopsis and rice using a chimeric dCas9-VP64-
EDLL, aiming to activate gene-specific expression.
However, the authors came to the conclusion that
the level of transcriptional activation achieved is
remarkably dependent on the individual genes
manipulated.

�Cerm�ak et al. (2017) compared Cas9 and Cas12 with
regard to the simultaneous genome modification at
multiple targets in plants. It was shown that Cas12a
exhibits endoribonuclease activity and is able to process
its pre-crRNA by itself (Fonfara et al. 2016; Swarts et al.
2017). Due to this property, Cas12a is naturally qualified
for multiplex gene editing, compared to Cas9. Using an
artificial CRISPR array, with alternating direct repeats
and crRNA, this functionality was proven in mammalian
cells (Zetsche et al. 2017) and plants (Wang et al. 2017b).
A further advantage is the smaller size of the Cas12a-
crRNA, which means either a smaller size of the

delivered vector or an enhancement of the amount of
crRNAs. In general, Cas12a can compete with Cas9
concerning DNA cleavage activity, mutation frequencies
and DNA binding (Zetsche et al. 2017). Recently,
multiplex gene editing was shown in rice with FnCas12a,
LbCas12a and SpyCas9. Nucleases and gRNAs were
co-expressed by a Pol II promoter with no additional
processing components (Wang et al. 2018).

Delivery systems for Cas endonucleases
For site-directed genome modification of plants, geno-
mic integration of gRNA- and Cas endonuclease-
encoding transgene expression units is the most widely
used approach. Therefore, conventional plant genetic
transformation methods, based upon Agrobacterium,
can be applied. In experimental model systems, such as
isolated protoplasts, these transgenes can also be
introduced via poration of the plasma membrane using
voltage pulses or high concentrations of polyethylene
glycol. In protoplast systems, transgene expression is
only required for a limited period. Therefore, it is
sufficient that much of the transgene expression
derives from non-integrated DNA.

Alternatively, non-integrating virus replicons carry-

ing units of gRNA, Cas9 and synthetic template (for

homology-directed DNA break repair) have been used

(Baltes et al. 2014; Ali et al. 2015). The major advantage

of this method is that the self-replicating vectors

facilitate high transgene expression, which increases

the efficiency of site-directed genome modification.

However, the challenge remains to find useful viruses

that are infectious in particular plant species of choice

and to eventually generate modified plants that are

entirely virus-free.
Particularly high transgene expression levels can

also be achieved during a limited episode upon biolistic
gene transfer. Taking this approach, Zhang et al. (2016)
produced wheat plants carrying targeted mutations
in the yield-related DEP1 and GASR7 genes. Of note,
no selective conditions were required for mutant
regeneration, at reasonable efficiency, and quite a
proportion of the primary mutant plants proved to be
non-transgenic for the gRNA and Cas9 genes.

In conventional methods, Cas endonucleases and
gRNAs act as products of their coding DNA sequences
previously transferred into host cells. However, a viable
alternative is to in vitro transcribe gRNA and Cas
endonuclease genes, or to pre-produce Cas protein
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using microbial expression platforms and, in contrast to
transgenesis, to use these non-heritable molecules
for transfection. It should be noted here that
such reagents collectively constitute nothing but
target-specific mutagens. In this context, gRNA and
Cas endonuclease can also be assembled prior to
transfection to formribonucleoprotein (RNP) complexes.

The use of RNPs has some advantages over the
principle of gRNA and Cas transgene expression. First,
there is no need to create species- or cell-specifically
tailored expression vectors for gRNA and Cas endonu-
clease genes. Second, the cellular dosage of gRNA and
Cas endonuclease is independent of the specificity and
strength of available promoters. Third, as the cellular
implementation of transgenes into accumulating gene
products is rendered unnecessary, gRNA and Cas
endonuclease exert their full capacity to generate
DSBs immediately after transfection. Fourth, the
efficacy of RNP complexes can be strong and is yet
confined to a comparatively short temporal window
after administration of the reagents, because these are
non-replicating molecules that are prone to both
dilution, as a result of cell proliferation, and cellular
degradation pathways. Consequently, the occurrence
of superfluous on-target mutations beyond the germ-
line, as well as unwanted off-target mutations in
germline cells is much reduced during later stages of
plant development. Fifth, once mutants are generated,
there is no need to screen the progeny for segregants
that have lost the coding sequences for gRNA and
Cas, that is, all mutant individuals obtained are
transgene-free and hence available for any further
analyses, investigations and applications.

A first proof of this concept was demonstrated by
Woo et al. (2015), who introduced gRNA/Cas9 RNPs to
protoplasts from a variety of plant species and, thereby,
showed indeed that targeted mutations had been
induced. In an attempt to transfect in vitro transcribed
RNAs for both gRNA and Cas9, 1% of the biolistically
transformed cells of bread wheat proved to carry
mutations in the GW2 target gene (Zhang et al. 2016). As
a further outcome of this study, about one-third of the
obtained plants carried mutations in all six GW2 alleles
that are present in hexaploid wheat, which is particu-
larly remarkable, albeit this approach was approxi-
mately 60% less efficient than the compared one that
involved transient and stable expression of gRNA and
Cas9 transgenes.

In maize, Svitashev et al. (2015) achieved another
milestone, in that they mutated four different genes,
simultaneously, via biolistic transfer of RNPs into
regenerable cells of immature embryos, which
was conducted in comparison with gRNA and Cas9
transgenesis. In this study, both principles (RNPs vs.
transgenes) were on a par in terms of mutagenesis
efficiency (Svitashev et al. 2016). A particularly valuable
application of using gRNA/Cas9 RNP complexes
was demonstrated by Andersson et al. (2018), who
generated an amylopectin potato via knock-out of
GBSS. In addition, the utilization of Cas12a has been
exemplified along with gRNA in the format of RNPs that
were transfected into protoplasts to induce targeted
mutations in the two FAD2-1 gene variants of the
palaeopolyploid soybean (Kim et al. 2017).

The cleavage efficiency of the enzyme variant
derived from Lachnospiraceae bacterium (LbCas12a)
proved to be about 10 timesmore efficient as compared
to the one of Acidaminococcus sp. BV3L6 (AcCas12a). In
the same study, tobacco protoplasts were used as well
tomutate the AOC gene. However, in this case LbCas12a
and AcCas12a caused a comparable mutation rate
of about 1%. Cas/gRNA RNPs were also shown to
be effective in approaches to homology-driven genome
editing using artificial DNA templates that feature the
modified sequences to be introduced to the host
genome. In this context, protein and DNA have
to be co-precipitated to particles used for biolistics
or co-transfected via polyethylene glycol-mediated
poration of the plasma membrane, which renders this
procedure quite challenging. Moreover, owing to the
co-transfer of template DNA, a particular advantage of
using RNPs is actually lost, namely that otherwise no
transgenes are introduced to the host genome.

The use of RNPs to implement the DNA sequence of
a repair template was demonstrated in maize, where
herbicide tolerance was established by modifying the
ALS2 gene. In this study, Svitashev et al. (2016) used a
single-stranded repair template that was 127 DNA
polynucleotides in length. In another novel approach,
pre-assembled RNP complexes were also used to
identify individuals carrying targeted modifications. To
this end, target-specific polymerase chain reaction
amplicons were in vitro digested by corresponding
RNPs, which allowed for gel-electrophoretic distinction
between wild-type and mutated plants with unprece-
dented reliability. This method was demonstrated via
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site-directed mutagenesis of the GW2 and Cer9 genes
of wheat and the PDS1 gene of rice (Liang et al. 2018b).

This approach may be of particular advantage in
species carrying large and complex genomes. In
addition, it provides much increased freedom as to
the choice of target sequences, in comparison to
the use of targets that carry recognition sites of
conventional restriction enzymes. A further incentive
for the use of RNPs for approaches to targeted genome
modification is that the commercial provision of
customized gRNA and a variety of Cas proteins is
nowadays well established. On the other hand, a
broader application of RNPs in the field of genome
engineering is still hampered, because suitable trans-
fection methods for regenerable cells have been
established only in a limited range of plant species.

APPLICATIONS OF TARGETED GENOME
MODIFICATION BY NHEJ

Target sequence-specific genome modification employ-
ing RNA-guided Cas endonucleases for DSB induction
has been established as routine in many laboratories in
which plant research is performed. A comprehensive
survey of applications of the technology would thus go
beyond the scope of this review, in which only
representative, or particularly impressive examples
are given.

Fundamental research
Ever since the RNA-guided Cas9 endonuclease emerged
as a viable tool for research and development in
plants, this technology has been used for the functional
validation of gene functions. Recent examples of
studies devoted to plant development, using Arabidop-
sis as an experimental model, were given for example
by Saito et al. (2018), who elucidated the role of BZR1 in
vascular differentiation, via Cas9-mediated knockout,
by Osakabe et al. (2016), who manipulated stomata
closure by knockout of OST2, by Liang et al. (2018a),
who knocked out GGAT1 so as to alter the photorespi-
ration pathway, and by Yu et al. (2018), who created
triple mutants with a single gRNA, which could not be
created by conventional crossbreeding.

Comprehensive genomic data, resources and tools
are now available in themajority of important cultivated
plants, and so the dominance of Arabidopsis research
has been somewhat declining in recent years. Instead,

as one of the major crop species, and representative of
agriculturally most important monocots, rice has been
playing an increasing role in fundamental research. For
example, Zeng et al. (2018) established the function of
OsBBS1, in the context of leaf senescence, and the
response to salt stress, by knocking out this gene.
Taking a base-editing approach using nCas9-PBE, Zong
et al. (2017) elucidated the role of OsCDC43 in
senescence and programmed cell death.

Further work was devoted to the functional

validation via site-directed mutagenesis of the nuclear

genes OsSLA4 and OsFLN1 involved in chloroplast

development (He et al. 2018; Wang et al. 2018c).

Site-directed mutagenesis triggered by Cas9 endonu-

cleases was also used in further species to validate gene

function. In cotton, for example, the function of CLA1,

another gene involved in chloroplast formation, was

studied via Cas9-mediated knockout (Wang et al.

2018a). In barley, knockout lines of PM19 were used

to study the role of this gene in dormancy. In tomato, a

novel mechanism of interspecific incompatibility was

recovered by knockout of the pollen-expressed FPS2

gene (Qin et al. 2018). Other examples are soybean and

Medicago truncatula, in which the processing of small

RNAs in the context of post-transcriptional gene

silencing was studied using Cas9-mediated knockout

of GmDrb2a, GmDrb2b and MtHen1 (Curtin et al. 2018).

Zhou et al. (2017) produced rice plants mutated in a

variety of micro-RNA genes, thereby providing new

insights into micro-RNA function and complex gene

regulation pathways.

Herbicide resistance
The establishment of herbicide-resistant crops was
among the first applied approaches taking advantage of
site-directed genome modification by means of RNA-
guided Cas9. On the other hand, the readily selectable
herbicide resistance also proved to be particularly
useful in establishing Cas endonuclease technology.
Whereas resistance to the herbicide Bentazon was
simply achieved by knockout ofOsBEL (Xu et al. 2014), in
the case of the herbicide targets acetolactate synthase
and 5-enolpyruvylshikimate-3-phosphate synthase, pre-
cise modifications were required to prevent their
inactivation by the respective herbicides while retaining
their essential function for the plant. And since the
development of herbicide resistance is one of the most
simple genetic modifications that can be associated
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with a selective advantage, in vitro, this principle was
the first to be used to establish methods of homology-
directed genome editing, for example in maize
(Svitashev et al. 2015), rice (Li et al. 2016a; Sun et al.
2016), and flax (Sauer et al. 2016). Basically the same
experimental approach was then also used to establish
homology-directed genomemodification, via delivery of
gRNA and Cas9 in the format of preassembled RNP
(Svitashev et al. 2016).

Yield-related traits
Customized RNA-guided Cas9 has also been broadly

used to modify traits that are determinants of crop

yield. Modern cultivars in numerous crops represent

semi-dwarf variants that are less prone to lodging, have

an increased capability of implementing nitrogen

fertilizers and have an improved harvest index, that is

an increase in the portion of harvested seeds or grains

from the total above-ground biomass. The generation

of more genetic diversity in plant height is still of high

interest to further fine-tune this trait for different

environmental and regional demands. Dwarf and semi-

dwarf plants have been generated via knockout of BolC.

GA4a in rapeseed (Lawrenson et al. 2015), ER1, ER2 and

SEC3a in rice (Ma et al. 2018; Zhang et al. 2018) and Dep1

in wheat (Zhang et al. 2016). Semi-dwarf rapeseed was

also created by selecting mutants carrying deletions in

the BaA6.RGA gene, whereby the translational reading

frame is retained (Yang et al. 2017). This principle

provides the opportunity to achieve functional mod-

ifications rather than an entire loss-of-function of the

target gene.
The temporal regulation of the developmental

switch from the vegetative to the reproductive phase
of both flowering time and fruit maturation, are further
important determinants of yield, which have to be
considered when tailoring cultivars for different
agricultural systems and regional conditions. Acceler-
ated maturity in rice and tomato was achieved via
knockout of OsHd2, Hd4, Hd5 (Li et al. 2017b) and of
SlSP5G (Soyk et al. 2017), respectively. By contrast,
knockout of GmFT2 entailed delayed flowering time in
soybean (Cai et al. 2018). Li et al. (2018a) demonstrated
that mutagenesis of the long non-coding RNA1459
results in delayed tomato fruit ripening.

Grain or seed number and weight represent even
more direct determinants of yield. Aiming to improve
both of these traits in rice, Li et al. (2016b) produced

mutants for the genes OsGn1a, DEP1, GS3 and IPA1.
Alternatively, grain weight was enhanced via knockout
of GW2, GW5 and TGW6 in rice (Xu et al. 2016), and of
GASR7 in wheat (Zhang et al. 2016). Increased locule and
seed number per silique were obtained in rapeseed via
knockout of both homeoalleles of the CLV3 gene (Yang
et al. 2018). Taking an even more sophisticated
approach in tomato, Rodr�ıguez-Leal et al. (2017)
demonstrated that a whole range of variability in locule
number and fruit size can be obtained by producing an
array of CLV3 promoter variants with different fragment
deletions. Cas9-mediated knockout of AGL6 caused
facultative parthenocarpy in tomato, which results in
seedless fruits (Klap et al. 2017). Reduced seed
shattering was achieved by knocking out the ALCATRAZ
gene of rapeseed (Braatz et al. 2017).

Tolerance to abiotic stress
Using Cas9-induced knockout lines, Huang et al. (2018)

have validated the role of rice NCED3 for salt tolerance.

In tomato, Wang et al. (2017a) revealed the implication

of MAPK3 in drought tolerance also by generating and

analyzing respective knockout lines. In a particularly

sophisticated approach, enhanced drought tolerance

was achieved by homology-directed repair of Cas9-

induced DNA breaks leading to enhanced expression of

the ARGOS8 gene of maize (Shi et al. 2017).

Resistance to pathogens
Resistance of Nicotiana benthamiana to pathogenic

geminiviruses was achieved by Baltes et al. (2015) and Ji

et al. (2015) via mutagenesis of target motifs residing

within the viral genomes. Uponmutational modification

of the previously known susceptibility factor eIF4F,

Chandrasekaran et al. (2016) generated cucumber with

resistance to various ipomo- and potyviruses.

Site-directed mutagenesis using RNA-guided Cas

endonucleases was also used to establish resistance to

bacterial plant diseases. In rice, for example, resistance

to bacterial blight and rice blast, respectively, was

achieved by knockout of the sugar transporter SWEET13

(Zhou et al. 2015) and of ERF922 (Wang et al. 2016). Jia

et al. (2017) established resistance to citrus canker by

knocking out the LOB1 gene. And more recently, Wang

et al. (2018b) rendered grapevine resistant to Botrytis

cinerea through the knockout of the transcription factor

WRKY52. The establishment of powdery mildew resis-

tance in wheat has been among the agriculturally most

CRISPR/Cas: From breeding to synthetic biology 1137

www.jipb.net December 2018 | Volume 60 | Issue 12 | 1127–1153



relevant achievements using RNA-guided Cas endonu-
cleases (Zhang et al. 2017b). In this study, all three EDR1
homeoalleles of hexaploid wheat were disrupted. Also
in tomato, powdery mildew resistance was achieved by
knockout of the susceptibility gene MLO1 (Nekrasov
et al. 2017).

Improvement of nutritional value
Site-directed genomemodification has also been shown

to be instrumental for the improvement of the

nutritional quality of feed and food. For example,

Cas9-mediated knockout of the maize IPK gene resulted

in a reduction of phytic acid biosynthesis, which is a

phosphorous storage compound indigestible by mam-

mals (Liang et al. 2014). Targeted knockout of the SBEI

and SBEIIb genes of rice resulted in a substantial

reduction of the amylopectin content in favor of the

amylose fraction in grains, which may contribute to

reduced occurrence of diabetes II, since the resultant,

so-called “resistant” starch is preferentially digested in

the colon rather than in the small intestine (Sun et al.

2017).

A comparatively challenging approach was taken by

S�anchez-Le�on et al. (2018), who simultaneously

knocked out as many as 35 of the a-gliadin genes of

bread wheat, leading to low gluten content of grains

with much reduced immunoreactivity. The fatty acid

composition has a significant impact on human health.

In the emerging oil seed plant Camelina sativa, the FAD2

gene was knocked out thereby increasing the fraction

ofmonounsaturated oleic acid to over 50% at the cost of

less desirable polyunsaturated fatty acids (Jiang et al.

2017; Morineau et al. 2017). This approach is another

example where the power of Cas9 technology was

essential, because three homeoalleles of the hexaploid

plant species had to be mutated. In yet another study in

Camelina, the content of very long fatty acids was

reduced by knocking out the FAE1 gene (Ozseyhan et al.

2018). An enrichment of the nutritionally highly valuable

compound lycopene was achieved in tomato fruits

via multiplex site-directed mutagenesis of several

genes involved in the carotenoid biosynthesis pathway

(Li et al. 2018b).

Industrial plant products
The formation of amylopectin-enriched starch was
demonstrated by knockout of the potato GBSS gene
(Andersson et al. 2017, 2018). Due to the resultant

reduction in the amylose fraction, a particular starch
quality was obtained that is highly useful for the
production of paper and other materials. The same
principle was also used to produce a newmaize variety,
in which the GBSS gene was knocked out in a current
elite genetic background to make waxy corn with
higher agricultural performance, as compared to
conventional breeds with the same trait. This crop is
likely to be among the very first ones produced by Cas
endonuclease technology to enter the market (Waltz
2016). An example of generating plants with improved
utility for molecular farming approaches was provided
by Kapusi et al. (2017), who altered the N-glycosylation
of barley-produced proteins by Cas9-mediated knock-
out of ENGase.

Plant breeding technology
Targeted genome modification has also been used to
improve plant breeding technology. In the context of
hybrid breeding, the opportunity of switching between
male fertility and sterility is an essential prerequisite. In
numerous studies, different genes of maize (MS26,
MS45) and rice (CSA, TMS5, PKS2) involved in pollen
functionality have been knocked out to form male
sterility (Svitashev et al. 2015; Li et al. 2016c; Svitashev
et al. 2016; Zhou et al. 2016; Zou et al. 2018). In this
context, a novel gene dosage-dependent mechanism
for indica-japonica rice hybrid male sterility was
revealed by knockout of one or two of the three
tandem-repeated copies of the Sc-i gene of indica rice,
which may facilitate the utilization of heterosis in hybrid
rice (Shen et al. 2017). Haploid technology also belongs
to the most powerful means to support plant breeding
programs. A recent study showed that haploidy inducer
lines of rice can be established via knockout of the rice
ortholog of the maize MATL gene. When the matl
mutant lines were used as pollinators, as much as 6% of
the progeny proved to be haploids (Yao et al. 2018).

MODIFICATIONS AND EXTENSIONS OF
CAS ENDONUCLEASES

Due to the presence of two individual DNA
cleavage domains, both Cas9 and Cas12a enzymes can
be converted into nickases (nCas9/nCas12a) by the
induction of point mutations in the catalytic sites of
either the HNH or RuvC domain of Cas9, or in the Nuc
domain of Cas12a, respectively. Thus, these nickases are
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able to induce site-specific DNA SSBs (Jinek et al. 2012;
Yamano et al. 2016). While publications for the

utilization of nCas12a are not yet available, nCas9 was

tested in different approaches. To induce a DSB with

single-strand overhangs, the nickase can be combined

with two gRNAs, each recognizing one target on one of

both DNA double strands with a few base pairs distance

from each other. Thus, both nickases generate an

adjacent SSB, resulting in a DSB with single-strand

overhangs (Figure 3).

Attempts to boost in planta GT, by nCas-mediated

induction of SSBs instead of DSBs, did not result in

comparable targeting efficiencies (Wolter et al. 2018).

Consequently, it is tempting to speculate whether the

utilization of Cas12a, with its intrinsic property to induce

short 50 overhang DSBs, can improve the efficiency of in

planta (GT), over the frequencies obtained with Cas9

(Wolter et al. 2018). Due to its cleavage activity distal

to its PAM, multiple rounds of DSB induction are

possible after InDel formation, via NHEJ repair, as

the crRNA is more tolerant to mismatches at this side

of the target sequence. Therefore, the crRNA

might bind again and a stimulation of the targeted

site for HR-mediated GT is still possible (Schindele et al.

2018).

A further advantage of engineering a DSB with

paired nickases is the increase in specificity to the target

by duplicating the recognition site requirements from

23 to 46 nt in total (Mali et al. 2013; Ran et al. 2013).

Moreover, potentially induced SSBs, at off-target sites,

can be accurately repaired by the base excision repair

pathway, thus any unintended sequence alterations in

non-target regions can be abolished (Fauser et al. 2014).

For optimal mutagenic results, the two SSBs should be

generated at a distance of 50–100 bp to each other, with

most mutagenic outcomes being deletions, compared

to mostly small insertions with the Cas9 nuclease. The

induction of DSBs by paired SSBs leads to single-strand

overhangs that are degraded, leading to longer

deletions. Besides deletions, the formation of sequence

duplications was discovered in plants directly at the

DNA breakage, presumably caused in accord the patch-

mediated DSB creation model followed by NHEJ

(Vaughn and Bennetzen 2014; Schiml et al. 2016).

Early studies with Cas9 revealed a relatively high off-

target DNA cleavage frequency in human cells (Fu et al.

Figure 3. Cas9 paired nickases approach
A single point mutation renders one nuclease domain of Cas9 inactive, resulting in the generation of a single-strand
break (SSB)-inducing enzyme (nCas9, nickase). Providing two different gRNAs targeting adjacent positions on
opposite DNA strands, two SSBs can be obtained in close proximity, resulting in a double-strand break with
single-stranded overhangs.
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2013). To reduce such off-target activity, it is advisable

to use bioinformatics tools to predict potential off-

target sites within the genome. Interestingly, hardly

any off-target events were identified so far in plants

by sequencing respective sites (Feng et al. 2014).

Likewise, large-scale whole-genome sequencing

analysis showed barely any off-target events for

SpyCas9 and LbCas12a (Tang et al. 2018). Nevertheless,

off-target activity remains a concern to be considered,

especially for targeted nuclease applications in

crops with large and partly polyploid genomes, such

as maize, rice and soybean (Scheben et al. 2017),

where highly repetitive sequences represent special

challenges for site-specific mutagenesis or GT. There-

fore, other efforts to improve the on-target/off-target

ratio will even further focus on the gRNA-target

binding.
In particular, the binding strength between Cas9 and

the target DNA appears to influence the specificity of
the nuclease. Therefore, several attempts have been
undertaken to influence the strength of this bond by
truncating the sequence of the gRNA at its 50 end (Fu
et al. 2014), or to destabilize the interaction between
the helicase domain and the non-complementary DNA
strand by mutations between the HNH and RuvC
domains in SpyCas9 (Slaymaker et al. 2016). Truncation
of the guide sequences revealed that a length of 17 or 18
nt exhibits efficient on-target recognition and a
reduction in off-target cleavage (Fu et al. 2014).
Structural analyses of SpyCas9 showed that the
nuclease forms contacts, including hydrogen bonds,
to the phosphate backbone of the target DNA (Anders
et al. 2014; Nishimasu et al. 2014), and it was tested
whether the disruption of these contacts is able to
influence cleavage of off-target sites (Kleinstiver et al.
2016).

To weaken the binding between protein and target

DNA, single amino acids in the SpyCas9-DNA contact

sites were exchanged. This disruption might affect the

binding energy of the complex, resulting in the

induction of DSBs with perfect matches with the target

DNA, while the bond is not sufficient to perform a break

when mismatches are present. This so-called SpCas9-HF

(HF: high fidelity) variant shows comparable on-target

DNA cleavage to wild-type SpyCas9, whereas almost no

off-target events where observed (Kleinstiver et al.

2016). Previous studies from the same group revealed

that mutations in the PAM interacting domain lead to

more specificity in the PAM recognition.

These findings suggest fewer off-target events

compared to wild-type SpyCas9. In addition, these

mutations cause an alteration in the PAM site to be

recognized (Kleinstiver et al. 2015). Further SpyCas9

variants (xCas9) were evolved using phage-assisted

continuous evolution (PACE). The enzymes developed

in this way recognize a range of different PAM motifs

including NG, GAA and GAT, and nevertheless

show significantly higher DNA specificity than SpyCas9.

Moreover, the off-target activity is considerably re-

duced compared to the commonly used SpyCas9 (Hu

et al. 2018).

In addition to the utilization of orthologous Cas9
proteins, altered PAM sites extend the selection of
potential target sites. The commonly used Cas9
nuclease from Streptococcus pyogenes is naturally
recognizing “NGG” as a PAM sequence; however,
many different Cas9 orthologs with various PAM
requirements have also been characterized. The Cas9
orthologs from Streptococcus thermophilus and Staph-
ylococcus aureus seemed most promising for genome
editing (Esvelt et al. 2013; Kleinstiver et al. 2015; Ran
et al. 2015) due to the variability of their PAM
sequences, by which a broader range of accessible
targets is provided (Ran et al. 2015). The Cas9
orthologs of Staphylococcus aureus (SauCas9) and
Streptococcus thermophilus (Sth1Cas9) require longer
PAM sequences than SpyCas9 (SauCas9: NNGGGT;
Sth1Cas9: NNRGAA), which should reduce the rate of
potential off-target events (Steinert et al. 2015).
Another advantage for both of these orthologs is
the smaller size with 3.2 kb for SauCas9 and 3.4 kb for
Sth1Cas9, compared to the 4.1 kb from SpyCas9, which
is especially favorable when the delivery is performed
via viral-based systems (Baltes et al. 2014; Ran et al.
2015).

Two different CRISPR open reading frames (ORFs)

were identified for SthCas9 orthologous to SpyCas9,

called CRISPR1 and CRISPR3. CRISPR1 is smaller and

shows a higher activity compared to CRISPR3 (Horvath

et al. 2008) and has been successfully used in bacteria,

human cells and plants (Jinek et al. 2012; Esvelt et al.

2013; Kleinstiver et al. 2015; Ma et al. 2015a; Ran et al.

2015; Steinert et al. 2015). The application of Sth1- and

SauCas9 in plants revealed that both orthologs
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achieved targeted mutagenesis, via NHEJ, with similar
high efficiency as with SpyCas9, and for SauCas9 an
even higher mutagenesis rate was established in
Arabidopsis (Steinert et al. 2015). SpyCas9, SthCas9
and SauCas9 belong to the class 2 type II CRISPR/Cas
system and are also divided into the same subtype A,
but are assigned to different clusters (Fonfara et al.
2014; Louwen et al. 2014). The mentioned orthologs
differ in the sequences of their associated RNAs (Ran
et al. 2015) and form special structures, like hairpins or
additional stem loop structures, which are required for
species-specific detection (Briner et al. 2014).

In addition to their DNA cleavage properties, Cas
proteins are very versatile tools. As mentioned
previously, nuclease domains can be deactivated by
point mutations within the active sites. For Cas9,
inducing point mutations in both the RuvC and HNH
domains is sufficient to obtain a site-specific DNA
binding protein, termed “deadCas9” (dCas9) (Jinek
et al. 2012; Qi et al. 2013). This is also applicable for
Cas12a, although only a point mutation within the RuvC
domain is required (dCas12a) (Zetsche et al. 2015). As a
result, the Cas proteins can be targeted to almost any
desired DNA locus, by exchanging 20-23 nucleotides of
the gRNA, for binding without cleavage.

Functional units can be fused to the dCas proteins,
allocating a desired effect at a specific locus of the DNA
by targeted binding. Thereby, these enzymes can
specifically repress gene expression by sterically block-
ing the transcription machinery, as was shown in
Escherichia coli and in human cells (Qi et al. 2013; Zhang
et al. 2017a), or be used as a platform to guide any
enzymatic activities to the desired DNA loci (Figure 4).
This property can be used for catalytic activities, such as
the visualization of specific genomic loci of living cells by
the fusion of a fluorescent protein to a dCas protein
(Chen et al. 2013). The application of multiple Cas9
orthologs fused with fluorescent proteins of different
colors enabled the multicolored detection of various
genomic loci within mammalian cells (Anton et al. 2014;
Ma et al. 2015a; Chen et al. 2016), and also recently in
plant cells (Dreissig et al. 2017).

With the intention of obtaining a detectable
fluorescent signal, a novel repeating peptide array,
called SunTag, was developed to serve as a platform
for multiple fluorescent protein-antibody fusions
(Tanenbaum et al. 2014). The linkage of a catalytic
effector to Cas9 can either be achieved by direct fusion

or indirect fusion, which includes a modified gRNA with
sequence-specific aptamer motifs enabling the binding
of the catalytic effectors to the gRNA. Protein domains
such as MS2, originating from an RNA phage coat
protein, recognize and specifically bind this RNA
sequence motif (Peabody 1993). By fusing the respec-
tive aptamer-binding domain to a catalytic effector, the
complex is also directed to the DNA in a sequence-
specific manner by gRNA-Cas9 interaction.

Aptamer-binding domains bind as dimers on the
respective aptamer sequence, whereby twice as many
effectors can bind, compared to a direct Cas fusion.
Another advantage is that various aptamers and their
corresponding binding domains can be used, enabling
simultaneous utilization of several effector proteins
(Konermann et al. 2015). Thus, an approach similar to
the SunTag system, to increase the fluorescent signal by
the integration of up to 16 MS2 binding motifs to the
gRNA, is especially suitable for imaging non-repetitive
targets (Qin et al. 2017).

In order to improve the gene repression properties
of dCas9 in human cells, a repressive KRAB domain was
fused to Spy-dCas9 and showed reduced expression of
the targeted genes. To test the so-called CRISPRi
platform, as a versatile tool for specific transcriptional
regulation, the same group fused the transcription
activator domain VP64 to dCas9 and was able to
activate reporter gene expression (Gilbert et al. 2013).
Targeting multiple loci of one gene of interest by
applying various gRNAs can enhance the desired effect
(Perez-Pinera et al. 2013). Cas9-based specific transcrip-
tional regulators fused with the activator domains
VP64, EDLL and TAL effectors or the SRDX repressor
domain were also successfully applied in plants, to
either activate or suppress endogenous genes in
Nicotiana benthamiana leaves and Arabidopsis plants
(Lowder et al. 2015; Piatek et al. 2015).

It was shown that the highest repression was
obtained by using three different gRNAs, targeting the
promotor region and first exon of the endogenous gene
in N. benthamiana leaves (Piatek et al. 2015). The VP64
transcriptional activator domain fused to dCas9 leads to
a strong activated expression of a reporter gene in
tobacco leaves, as well as in protein-coding and non-
protein-coding genes in Arabidopsis plants (Lowder
et al. 2015). Through recruitment of multiple transcrip-
tional activators, the dCas-based transcriptional activa-
tor system can be improved further (Konermann et al.
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2015; Zalatan et al. 2015), as shown using the SunTag
system (Tanenbaum et al. 2014). Furthermore, indirect
fusions of transcriptional activators, like VP64 to
modified gRNAs, have allowed robust transcriptional
multiplex gene activation, in planta (Lowder et al. 2018).

In parallel, Cas12a is also suitable as a DNA-binding
protein and for delivering catalytic effectors to targeted
genomic locations. Lb-dCas12a was fused to either the
strong synthetic VPR activator derived from the VP16

activator, Rta- or p65 activator domains, for robust
transcriptional activation in human cells. In the same
study, it was demonstrated that transcriptional activa-
tion is inducible by drug treatment, using the split
Lb-dCas12a-DmrA complex and a DmrC-VPR or -p65
complex. Taking advantage that Cas12a can process
its own crRNA in a multiplex single transcript, the
same group confirmed the synergistic activation when
targeting either the same or different promoters

Figure 4. Applications for catalytically inactive Cas9 DNA-binding proteins
The nuclease domains of Cas9 can be deactivated by pointmutations to convert the protein into a sequence-specific
DNA-binding protein. The resultant inactive Cas9 (dCas9) can serve as a platform for targeting other effectors to the
DNA by adapting the single-guide RNA (sgRNA). These effectors can be fused to dCas9, via a short peptide linker,
and perform various functions on the DNA. By fusing fluorescent proteins to dCas9 (A), specific DNA sequences can
be labeled. The fusion of transcriptional repressors (B), or activators (C), allows for targeted modulation of gene
expression. Gene activity can also be regulated, epigenetically, by fusing histone modifiers to dCas9 (D). Single
bases can be edited by the targeted activity of deaminases (E). Alternatively, factors can be indirectly bound to
extended crRNAs (aptamers), via compatible peptide motifs (RBP) (F). Instead of direct protein-linked mediated
fusion of effectors to dCas9, factors can be indirectly bound to extended crRNAs (aptamers), via compatible
peptide motifs.
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(Tak et al. 2017). In Arabidopsis, dCas12a was already
successfully applied as a transcriptional repressor fused
with the SRDX repressor domain. The results indicate
that Lb-dCas12a, and particularly As-dCas12a, can
efficiently bind to the DNA and regulate gene expres-
sion (Tang et al. 2017).

Regulation of gene expression can also be achieved
by the fusion of epigenetic regulators to Cas effectors
causing chromatin manipulation. The fusion of histone
acetyltransferase p300 to the C-terminus of dCas9
enabled transcriptional activation of targeted genes, in
human cells, by catalyzing acetylation of histone H3
lysine 27 (H3K27). Binding of the dCas effector protein,
at the selected promoter or enhancer region, activates
the targeted gene by specific chromatin modification
(Hilton et al. 2015). Fusion of the p300 core domain to
Lb-dCas12a showed robust and specific gene activation
in human cells and was able to activate three genes,
simultaneously, using three different gRNAs (Zhang
et al. 2017a). Vice versa, targeted epigenetic repression
inmammalian cells can be achieved by demethylation of
H3K4/K9 through the histone demethylase LSD1
(Kearns et al. 2015). The potential of developing new
epialleles for generating traits of interest has been
successfully demonstrated in Arabidopsis by targeted
demethylation of a specific cytosine residue in the
promoter of the FWA gene, resulting in a heritable late-
flowering phenotype (Gallego-Bartolom�e et al. 2018).

In plants, genome editing, based on DSB-induced
HR, to incorporate a template with a desired sequence
modification can be a tedious and inefficient process;
thus, the newly developed Cas-dependent “base
editing” could be an adjuvant solution for some traits
to be developed. Thismethod is based on the properties
of cytidine deaminases or adenosine deaminases and
allows for the directed conversion of one targeted DNA
base. The fusion of a cytidine deaminase enzyme to a
dCas9 effector, or a Cas9 nickase, mediates the
targeted conversion of cytidine to uridine, resulting in
a C-to-T substitution. Therefore, converting base pairs
C/G to T/A does not require any DSBs or HR-mediated
repair processes. Cytidine deaminases require RNA or
ssDNA as substrate, therefore the Cas effector is not
only the key for targeted DNA binding, but also for
unravelling of the DNA during R-loop formation.

Experimentally, the cytidine deaminase rAPOBEC1
was fused to the N-terminus of Spy-dCas9 (BE1) and
Spy-nCas9. Fusion of the effector to a nickase causes

the incorporation of the new base in the non-edited
strand, while the SSB-induced mismatch repair mecha-
nism (MMR) synthesizes along the edited strand. To
counteract the intrinsic cellular repair mechanism and
optimize the editing result, a uracil DNA glycosylase
inhibitor (UGI) was fused to the C-terminus of the
targeting tool to suppress base-excision repair (BE2/
BE3) (BER) (Komor et al. 2016) by preventing a possible
removal of uracil, as the most deaminated bases are
restored by BER (Liu (Man) 2009).

Currently, the commonly used tool for base editing is
APOBEC-XTEN-nCas9-UGI (BE3) (Komor et al. 2016).
Whereas the BE3 approach catalyzes cytidine deamina-
tion within a window of 5 bp around the �15 position
upstream of the PAM sequence (Komor et al. 2016),
similar results were obtained with a C-terminal fusion of
an activation-induced cytidine deaminase (AID), which
catalyzes deamination 3–5 bp around �18 position
upstream of the PAM sequence (Nishida et al. 2016).
Based on the BE3 approach, with APOBEC or the one
with AID, many different base editing attempts have
been undertaken, for example by targeted induction of
STOP codons for gene disruption in human cells,
silkworm or E. coli (Billon et al. 2017; Kuscu et al. 2017;
Li et al. 2018d; Zheng et al. 2018). Furthermore, base
editing attempts were also achieved with the BE3
system in such crop plants as rice, wheat and maize (Li
et al. 2017a; Lu and Zhu 2017; Zong et al. 2017; Ren et al.
2018; Yan et al. 2018). Thus, herbicide-resistant rice as
well as marker-free edited tomato plants were obtained
through the BE-AID approach (Shimatani et al. 2017).

To expand base editing applications, further variants
(BE4) have been developed using a Cas9 ortholog
of Staphylococcus aureus (SaBE4), which increases
the efficiency of the conversion from C/G to T/A. The
unintended formation of InDels during editing could be
successfully reduced by fusing the DSB binding
bacteriophageMu protein Gam, to BE3 and BE4 systems
(Komor et al. 2017). The challenge of off-target editing
events was addressed by combining the increased
target sequence specificity requirements of Cas9-HF
with the BE3 system in a study delivering the editor as
RNPs (Rees et al. 2017). Although many different
cytidine deaminases exist, no naturally adenine deam-
inases are known (Gaudelli et al. 2017). The develop-
ment of a tRNA adenosine deaminase to mediate the
conversion of A/T to G/C in genomic DNA expands the
base editing tool portfolio by combining it with the BE3
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and BE4 base editing designs, respectively (Gaudelli
et al. 2017). The application of LbCas12a and AsCas12a as
“dead-” and nickase-variants in the aforementioned
BE-variants also provides efficient options to alter the
DNA sequence specifically without the induction of
DSBs (Li et al. 2018c).

Next to the targeted editing of individual bases to
modify genes, the Cas effector tools developed so far
also allow for sequence-specific regulation of transcrip-
tion, utilizing the recently discovered Cas13 effector,
which operates exclusively on RNA and mediates its
cleavage. Three Cas13 orthologs studied so far showed
efficient targeted RNA knockdown comparable to RNAi,
whereas these proteins exhibit a higher specificity.
LwaCas13a was applied for targeted RNA knockdown in
rice protoplasts with up to 50% knockdown efficiency,
48 h post-transformation.

Post-transcriptional gene knockdown, instead of
transcriptional regulation, can be interesting when
only certain splicing variants are to be regulated, as
all isoforms are repressed during transcriptional
regulation (Mahas et al. 2018). Additionally, gene
activity suppression by post-transcriptional regulation
provides a fast, effective and highly specific means of
regulation: existing cytoplasmic mRNAs get cleaved,
whereas transcriptional regulation suppresses the
production of further mRNA generations, while already
produced mRNAs remain active (Schindele et al. 2018;
Wolter and Puchta 2018). An applied example of such
post-transcriptional repression was recently shown to
successfully combat an RNA virus in plants, using
the Cas13a ribonuclease from Leptotrichia shahii
(LshCas13a). Nicotiana benthamiana leaves were infil-
trated with a Turnip mosaic virus (TuMV), LshCas13a and
crRNAs targeting the virus. Seven days post-inoculation,
the viral GFP reporter signal was reduced by 50%,
whereas plant vitality was not affected. However, there
was a strong variance in the effectiveness of tested
crRNAs, indicating a significant influence of the
secondary structure of the mRNA on the cleavage
activity (Aman et al. 2018). Compared to LwaCas13a and
PspCas13b, the recently discovered RNA-binding effec-
tor EsCas13d has so far achieved the strongest gene
knockdown in human cells (Konermann et al. 2018).
Whether Cas13d is as efficient in plants has yet to be
tested.

Similar to Cas9 and Cas12, the catalytic residues in
the HEPN domains of Cas13 can be deactivated by

induction of pointmutations resulting in a dCas13, a site-
specific RNA binding protein. These RNA binding
proteins can also be fused to functional units, for
example fluorescent proteins to allow for specific
imaging of RNAs in live cells (Abudayyeh et al. 2017).
Furthermore, dCas13 enables precise RNA base editing
by the fusion of an adenosine deaminase, as previously
shownwith Cas9 (Cox et al. 2017). In this way, sequence
alterations can be incorporated, at the transcript level,
without a permanent modification of the encoding
genome sequence.

PERSPECTIVE

Multiple Cas applications in parallel (3D principle)
The intrinsic specificity of Cas orthologs for their
corresponding gRNA, combined with the availability
of modified proteins (nickase, dCas) and the feasibility
of directly and indirectly fusing effector proteins, or
functional domains, allows for not only simultaneous
targeting of various loci in a genome, but also
delivering locally different enzymatic activities to
elevate, or suppress transcription of genes, edit
individual bases and, thus, modify the ORF of a given
gene to improve the encoded protein functions, or
enable epigenetic modifications. Together with the
site-specific induction of SSBs or DSBs and the
possibility to transiently modify the required DNA
repair machinery, we now have efficient and specific
multifunctional tools available that can be applied to
modulate complete pathways and thus, change the
metabolome to synthetically improve crop traits. To
improve the efficiency of such highly sophisticated
genome reshuffling efforts, 3D portfolio properties of
Cas orthologs could be exploited (Puchta 2016). Such

an approach could enable boosting specific DSB repair

pathways, by transient upregulation of desired repair

factors, or downregulating competing pathways, which

might shift the general DSB repair equilibrium in favor

of the desired outcome.
Approaches of this nature for orthogonal regulation

of gene expression became even more flexible with the
availability of fusion gRNAs (fgRNAs) that can recruit
different Cas orthologs, simultaneously, and thus,
facilitate multiplexing with no detectable increase in
off-target activity (Kweon et al. 2017). Additionally, the
successful application of an orthogonal tri-functional
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CRISPR system in S. cerevisiae for metabolic engineer-
ing, unambiguously demonstrates the versatility of
combining different targeted activities, simultaneously,
in one cell (Lian et al. 2017). Another intriguing
possibility has been described as the proxy-CRISPR
approach, which combines dCas9 orthologs to change
chromatin structure, in a genomic region of interest, to
restore therein the nuclease activity of another
targeted effector.

This targeted activation bears strong potential to

selectively edit a single gene in a genome harboring

multiple identical copies, by adapting the adjacent

chromatinmicroenvironment (Chen et al. 2017). Further-

more, modulation of gene expression can be achieved

by targeting engineered bivalent dCas9 complexes to

distal cis-regulatory elements in order to support the

formation of large DNA loops and thereby, improving

enhancer-promoter contact, as demonstrated in E. coli

reporter strains (Hao et al. 2017). Additionally, specific

recombination factors might be targeted to the loci

needed, to locally enhance the availability of required

repair processes, as recently demonstrated in mamma-

lian cells for the key HR factor CtIP fused to Cas9

(Charpentier et al. 2018). Furthermore, we can envisage

combining the aforementioned factors and even

physically enhancing the probability of desired recombi-

nation events by directly or indirectly fusing Cas

effectors to tether chromosomal fragments of choice.

Applications for highly sophisticated genome
restructuring and breeding acceleration
The ability to induce multiple simultaneous DSBs in one
genome, by targeting Cas9 nucleases to more than one
locus, allows for the precise induction of segmental
chromosome inversions, or reciprocal translocations.
Inversions of genomic sequences would not change the
overall gene pool of a given species; however, it might
pose ameans to render certain regions silent formeiotic
recombination, due to the rearranged sequence
context. Such artificially created recombination blocks
might be suitable to stabilize advantageous alleles in
breeding processes and thus, might reduce develop-
mental costs. Next to that, targeted induction of
reciprocal translocations between non-homologous
chromosomes can be applied to create new tight
linkage groups between advantageous traits to stabilize
these as one unit for breeding purposes. Vice versa,
undesired traits occurring in natural close linkages can

be broken to allow simple separation by segregation.

The technology can be applied in a way that the

obtained recombinants do not contain any transgenic

sequences. Thus, the molecular tools described above

should allow for reshaping genomes in order to better

exploit the natural gene pool and additionally, to

accelerate crop breeding processes.
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