
CPS page ruler, Thermo Fisher

pre stained marker

Gel type Gel concentration Running buffer								Tris-G	lycine	•						Tris-Acetate					Bis-Tris										
		4-20% B		8-10	6%	10-20%		8%		10	10% 12%		6	15%		3-8	7%	7%		4-12%			10%			129		2%	6		
			Tris-Gycine												Tris-Acetate		MO	PS	MES		MOPS MES		ES	MOPS		MES					
		Apparent Molecular Weights, kDa																													
	10					=	170			=	170	-	170 130 100		170 130 100			_	150						140	_	140	_	140	_	140
	20	=	176		170 130	-	100	Ξ	170	_		-	700		55					=	140 115	=	140 115	Ξ	115	Ξ	115 80	=0	115 80	=	80 70
% length of gel	30		100	Ξ	100		7.0 E.E.	-	100	-	m		55 40	_	40	_	150	_	120	_	80	=	80 TO	_	66	-	70	-	12	_	50
	40		TO.	_	70		33	-	70	_	55	_	35		35	_	120	-	185	-	6		50	-	50	Ξ	300	_	50	-	9
	50		0	_	55	Ξ	35	-	66		40	_	25:	-	26		225	_	65	-	50	-	40	_	40	_	30	i en	40	-	3
	60			-	4)	-	25	_	40	=	- 8					- 85	80	_	50	-	40	_	- 30		30		25	_	30	_	2
	70	-	8	=	35						- 25	_	15	_	15	- 68	68			_	30	- 25	25	-	39			_	25	-	15
	80		5	-	25	-	15		35.				100				50	-	40	-	25	_	15:	— 25	25	-	15.				
	90			_	%			=	25	_	15		10.0	_	10	Ξ	40 30	-	SD	_	15		1201							-	1
	100				70		10	-	15	_	10					_	75.5	_	00.00	_	10	_	103	-	15	_	10	-	15.		

