Gehrke, Fabienne; Puchta, Holger (2024): Induzierbares CRISPR-Kill-System zur zelltypspezifischen Gewebeeliminierung. In: Biospektrum 30 (1), S. 55-57. DOI: 10.1007/s12268-024-2079-z.

Merker, Laura; Feller, Laura; Dorn, Annika; Puchta, Holger (2024): Deficiency of both classical and alternative end-joining pathways leads to a synergistic defect in double-strand break repair but not to an increase in homology-dependent gene targeting in Arabidopsis. In: The Plant journal 118, S. 242-254. DOI: 10.1111/tpj.16604.

Capdeville, Niklas; Schindele, Patrick; Puchta, Holger (2024): Increasing deletion sizes and the efficiency of CRISPR/Cas9-mediated mutagenesis by SunTag-mediated TREX1 recruitment. In: The Plant journal 118, S. 277-287. DOI: 10.1111/tpj.16586.

Puchta, Holger; Houben, Andreas (2024): Plant chromosome engineering – past, present and future. In: New Phytologist. DOI: 10.1111/nph.19414.

Pietralla, Janine; Capdeville, Niklas; Schindele, Patrick; Puchta, Holger (2024): Optimizing ErCas12a for efficient gene editing in Arabidopsis thaliana. In: Plant Biotechnology Journal, Artikel pbi.14194. DOI: 10.1111/pbi.14194.


Puchta, Holger (2023): Regulation of gene-edited plants in Europe: from the valley of tears into the shining sun? In: aBIOTECH. DOI: 10.1007/s42994-023-00130-8.

Puchta, Holger (2023): The power of repetition. In: Nature plants DOI: 10.1038/s41477-023-01496-9.

Gehrke, Fabienne; Ruiz‐Duarte, Paola; Schindele, Angelina; Wolf, Sebastian; Puchta, Holger (2023): An inducible CRISPR‐Kill system for temporally controlled cell type‐specific cell ablation in Arabidopsis thaliana. In: New Phytologist, Artikel nph.19102. DOI: 10.1111/nph.19102.

Dvořák Tomaštíková, Eva; Prochazkova, Klara; Yang, Fen; Jemelkova, Jitka; Finke, Andreas; Dorn, Annika et al. (2023): SMC5/6 complex-mediated SUMOylation stimulates DNA-protein crosslink repair in Arabidopsis. In: The Plant Cell, koad020. DOI: 10.1093/plcell/koad020.

Capdeville, Niklas; Schindele, Patrick; Puchta, Holger (2023): Getting better all the time — recent progress in the development of CRISPR/Cas-based tools for plant genome engineering. In: Current Opinion in Biotechnology 79, S. 102854. DOI: 10.1016/j.copbio.2022.102854.


Schindele, Patrick; Merker, Laura; Schreiber, Tom; Prange, Anja; Tissier, Alain; Puchta, Holger (2022): Enhancing gene editing and gene targeting efficiencies in Arabidopsis thaliana by using an intron‐containing version of tt Lb Cas12a. In Plant Biotechnology Journal, Article pbi.13964. DOI: 10.1111/pbi.13964.

Rönspies, Michelle and Puchta, Holger (2022): Redirecting meiotic recombination by CRISPR-Cas-mediated chromosome engineering. In Nature plants. DOI: 10.1038/s41477-022-01239-2.

Rönspies, Michelle; Schmidt, Carla; Schindele, Patrick; Lieberman-Lazarovich, Michal; Houben, Andreas; Puchta, Holger (2022): Massive crossover suppression by CRISPR–Cas-mediated plant chromosome engineering. In Nature plants. DOI: 10.1038/s41477-022-01238-3.

Rönspies, Michelle; Schindele, Patrick; Wetzel, Rebecca; Puchta, Holger (2022): CRISPR–Cas9-mediated chromosome engineering in Arabidopsis thaliana. In Nat Protoc. DOI: 10.1038/s41596-022-00686-7.

Schindele, Angelina; Gehrke, Fabienne; Schmidt, Carla; Röhrig, Sarah; Dorn, Annika; Puchta, Holger (2022): Using CRISPR-Kill for organ specific cell elimination by cleavage of tandem repeats. In Nat. Commun. 13 (1502). DOI: 10.1038/s41467-022-29130-w.

Gehrke, Fabienne; Schindele, Angelina; Puchta, Holger (2022): Nonhomologous end joining as key to CRISPR/Cas-mediated plant chromosome engineering. In Plant physiology. DOI: 10.1093/plphys/kiab572

Puchta, Holger; Jiang, Jiming; Wang, Kan; Zhao, Yunde (2022): Updates on gene editing and its applications. In Plant physiology 188 (4), pp. 1725–1730. DOI: 10.1093/plphys/kiac032.



Hacker, Leonie; Capdeville, Niklas; Feller, Laura; Enderle‐Kukla, Janina; Dorn, Annika; Puchta, Holger (2021): The DNA‐dependent Protease AtWSS1A suppresses persistent double strand break formation during replication. In New Phytologist. DOI: 10.1111/nph.17848

Wetzel, Rebecca; Schindele, Patrick; Puchta, Holger (2021): Von Genen zu Chromosomen: Pflanzenzüchtung mit CRISPR-CAS. In Biospektrum 27 (6), pp. 613–615. DOI: 10.1007/s12268-021-1644-y

Hacker, Leonie; Dorn, Annika; Enderle, Janina; Puchta, Holger (2021): The repair of topoisomerase 2 cleavage complexes in Arabidopsis. In The Plant cell. DOI: 10.1093/plcell/koab228

Wolter, Felix; Schindele, Patrick; Beying, Natalja; Scheben, Armin; Puchta, Holger (2021): Different DNA repair pathways are involved in single-strand break-induced genomic changes in plants. In The Plant cell. DOI: 10.1093/plcell/koab204

Rönspies, Michelle; Dorn, Annika; Schindele, Patrick; Puchta, Holger (2021): CRISPR-Cas-mediated chromosome engineering for crop improvement and synthetic biology. In Nature plants 7 (5), S.566–573. DOI: 10.1038/s41477-021-00910-4

Beying, Natalja; Schmidt, Carla; Puchta, Holger (2021): Double strand break (DSB) repair pathways in plants and their application in genome engineering. In: Matthew R. Willmann (Ed.): Genome editing for precision crop breeding: Burleigh Dodds Science Publishing (Burleigh Dodds Series in Agricultural Science), S. 27–62. DOI: 10.19103/AS.2020.0082.04

France, Martin G.; Enderle, Janina; Röhrig, Sarah; Puchta, Holger; Franklin, F. Chris H.; Higgins, James D. (2021): ZYP1 is required for obligate cross-over formation and cross-over interference in Arabidopsis. In Proc Natl Acad Sci USA 118 (14), e2021671118. DOI: 10.1073/pnas.2021671118

Huang, Teng-Kuei and Puchta, Holger (2021): Novel CRISPR/Cas applications in plants: from prime editing to chromosome engineering. In: Transgenic Res. DOI: 10.1007/s11248-021-00238-x.

Whitbread, Amy Leanne; Dorn, Annika; Röhrig, Sarah; Puchta, Holger (2021): Different functional roles of RTR complex factors in DNA repair and meiosis in Arabidopsis and tomato. In: Plant J. DOI: 10.1111/tpj.15211.

Huang, Teng-Kuei; Armstrong, Brittney; Schindele, Patrick; Puchta, Holger (2021): Efficient gene targting in Nicotiana tabacum using CRISPR/SaCas9 and temperature tolerant LbCas12a. In: Plant Biotechnology J. DOI: 10.1111/pbi.13546.

Capdeville, Niklas; Merker, Laura; Schindele, Patrick; Puchta, Holger (2021): Sophisticated CRISPR/Cas tools for fine-tuning plant performance. In: Journal of Plant Physiology. 257, S. 153332. DOI: 10.1016/j.jplph.2020.153332.



Dorn, Annika und Puchta, Holger (2020): DNA repair meets climate change. In: Nat Plants. 6 (12), S. 1398-1399. DOI: 10.1038/s41477-020-00804-x.

Rönspies, Michelle; Schindele, Patrick; Puchta, Holger (2020): CRISPR/Cas-mediated chromosome engineering: opening up a new avenue for plant breeding. In: Journal of Experimental Botany. 72 (2), S. 177-183. DOI: 10.1093/jxb/eraa463.

Schmidt, Carla; Fransz, Paul; Rönspies, Michelle; Dreissig, Steven; Fuchs, Jörg; Heckmann, Stefan; Houben, Andreas; Puchta, Holger (2020): Changing local recombination patterns in Arabidopsis by CRISPR/Cas mediated chromosome engineering. In: Nat. Commun 11 (4418). DOI: 10.1038/s41467-020-18277-z.

Khosravi, Solmaz; Schindele, Patrick; Gladilin, Evgeny; Dunemann, Frank; Rutten, Twan; Puchta, Holger; Houben, Andreas (2020): Application of aptamers improves CRISPR-based live imaging of plant telomeres. In: Front. Plant Sci., 11:1254. DOI: 10.3389/fpls.2020.01254

Beying, Natalja; Schmidt, Carla; Pacher, Michael; Houben, Andreas; Puchta, Holger (2020): CRISPR–Cas9-mediated induction of heritable chromosomal translocations in Arabidopsis. In: Nat. Plants 19, S. 778. DOI: 10.1038/s41477-020-0663-x

Merker, Laura; Schindele, Patrick; Huang, Teng-Kuei; Wolter, Felix; Puchta, Holger (2020): Enhancing in planta gene targeting efficiencies in Arabidopsis using temperature-tolerant CRISPR/LbCas12a. In: Plant biotechnology journal. DOI: 10.1111/pbi.13426

Schindele, Patrick; Puchta, Holger (2020): Engineering CRISPR/LbCas12a for highly efficient, temperature-tolerant plant gene editing. In: Plant biotechnology journal 18 (5), S. 1118–1120. DOI: 10.1111/pbi.13275.

Merker, L.; Schindele, P. & Puchta, H. (2020): Using CRISPR/ttLbCas12a for in planta gene targeting in A. thaliana. In: Current Protocols in Plant Biology, 5, e20117. DOI: 10.1002/cppb.20117

Schindele, P.; Wolter, F. & Puchta, H. (2020): CRISPR Guide RNA Design Guidelines for Efficient Genome Editing. In: Methods in molecular biology (Clifton, N.J.) 2166, S. 331–342. DOI: 10.1007/978-1-0716-0712-1_19

Khosravi, S.; Dreissig, S.; Schindele, P.; Wolter, F.; Puchta, H. & Houben, A. (2020): Live-Cell Imaging in Plant Cells with a Telomere-Specific Guide RNA. In: Methods in molecular biology (Clifton, N.J.) 2166, S. 343-356. DOI: 10.1007/978-1-0716-0712-1_20

Capdeville, N.; Schindele, P. & Puchta, H. (2020): Application of CRISPR/Cas-mediated base editing for directed protein evolution in plants. In: Science China. Life sciences. DOI: 10.1007/s11427-020-1655-9.

Hacker, L.; Dorn, A. & Puchta, H. (2020) Repair of DNA-protein crosslinks in plants. In: DNA Repair, 87 (2020) 102787. DOI:10.1016/j.dnarep.2020.102787

Dorn A. & Puchta H. (2020) Analyzing Somatic DNA Repair in Arabidopsis Meiotic Mutants. In: Pradillo M., Heckmann S. (eds) Plant Meiosis. Methods in Molecular Biology, vol 2061. Humana, New York, NY. DOI: 10.1007/978-1-4939-9818-0_25

Schindele, A.; Dorn, A. & Puchta, H. (2020): CRISPR/Cas brings plant biology and breeding into the fast lane. In: Current Opinion in Biotechnology 61, S. 7–14. DOI: 10.1016/j.copbio.2019.08.006



Wolter, Felix; Puchta, Holger (2019): In planta gene targeting can be enhanced by the use of CRISPR /Cas12a. In: Plant J. DOI: 10.1111/tpj.14488.

Dorn, Annika; Feller, Laura; Castri, Dominique; Röhrig, Sarah; Enderle, Janina; Herrmann, Natalie J. et al. (2019): An Arabidopsis FANCJ helicase homologue is required for DNA crosslink repair and rDNA repeat stability. In: PLoS genetics 15 (5), e1008174. DOI: 10.1371/journal.pgen.1008174

Schmidt, Carla; Pacher, Michael; Puchta, Holger (2019): Efficient induction of heritable inversions in plant genomes using the CRISPR/Cas system. In: The Plant journal : for cell and molecular biology. DOI: 10.1111/tpj.14322.

Enderle, Janina; Dorn, Annika; Beying, Natalja; Trapp, Oliver; Puchta, Holger (2019): The protease WSS1A, the endonuclease MUS81 and the phosphodiesterase TDP1 are involved in independent pathways of DNA-protein crosslink repair in plants. In: The Plant cell Vol. 31: 775–790, April 201 . DOI: 10.1105/tpc.18.00824.

Dorn, Annika; Puchta, Holger (2019) DNA Helicases as Safekeepers of Genome Stability in Plants. Genes 2019, 10, 1028 DOI: 10.3390/genes10121028

Enderle, Janina; Dorn, Annika; Puchta, Holger (2019): DNA- and DNA-Protein-Crosslink Repair in Plants. In: International Journal of Molecular Sciences 20 (17). DOI: 10.3390/ijms20174304

Schmidt, Carla; Schindele, Patrick; Puchta, Holger (2019): From gene editing to genome engineering: restructuring plant chromosomes via CRISPR/Cas. In: aBIOTECH 36, S. 17. DOI: 10.1007/s42994-019-00002-0

Wolter, Felix; Schindele, Patrick; Puchta, Holger (2019): Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed genetic diversity at multiple sites. In: BMC Plant Biol 19 (1), S. 557. DOI: 10.1186/s12870-019-1775-1

Huang, Teng-Kuei; Puchta, Holger (2019): CRISPR/Cas-mediated gene targeting in plants: finally a turn for the better for homologous recombination. In: Plant cell reports. DOI: 10.1007/s00299-019-02379-0

Schmidt C., Pacher M., Puchta H. (2019) DNA Break Repair in Plants and Its Application for Genome Engineering. In: Kumar S., Barone P., Smith M. (eds) Transgenic Plants. Methods in Molecular Biology, vol 1864. Humana Press, New York, NY. DOI: 10.1007/978-1-4939-8778-8_17



Dorn, A.; Röhrig, S.; Papp, K.; Schröpfer, S.; Hartung, F.; Knoll, A.; Puchta, H. (2018), The topoisomerase 3α zinc-finger domain T1 of Arabidopsis thaliana is required for targeting the enzyme activity to Holliday junction-like DNA repair intermediates. In: PLoS genetics 14 (9), e1007674. DOI: 10.1371/journal.pgen.1007674

Wolter, F. , Klemm, J. and Puchta, H. (2018), Efficient in planta gene targeting in Arabidopsis using egg‐cell specific expression of the Cas9 nuclease of S. aureus. Plant J. . doi:10.1111/tpj.13893

Röhrig, S. , Dorn, A. , Enderle, J. , Schindele, A. , Herrmann, N. J., Knoll, A. and Puchta, H. (2018), The RecQ‐like helicase HRQ1 is involved in DNA crosslink repair in Arabidopsis in a common pathway with the Fanconi anemia‐associated nuclease FAN1 and the postreplicative repair ATPase RAD5A. New Phytol. . doi:10.1111/nph.15109

Kumlehn, J.; Pietralla, J.; Hensel, G.; Pacher, M.; Puchta, H. (2018): The CRISPR/Cas revolution continues: From efficient gene editing for crop breeding to plant synthetic biology. In: Journal of integrative plant biology. DOI: 10.1111/jipb.12734

Wolter, F.; Puchta, H. (2018): Application of CRISPR/Cas to Understand Cis- and Trans-Regulatory Elements in Plants. In: Methods in molecular biology (Clifton, N.J.) 1830, S. 23–40. DOI: 10.1007/978-1-4939-8657-6_2.

Schindele, P. , Wolter, F. and Puchta, H. (2018), Transforming plant biology and breeding with CRISPR/Cas9, Cas12 and Cas13. FEBS Lett. . doi:10.1002/1873-3468.13073

Wolter, F. and Puchta, H. (2018), The CRISPR/Cas revolution reaches the RNA world: Cas13, a new Swiss Army knife for plant biologists. Plant J. Accepted Author Manuscript. . doi:10.1111/tpj.13899



Dreissig, S., Schiml, S., Schindele, P., Weiss, O., Rutten, T., Schubert, V., Gladilin, E., Mette, MF., Puchta, H & Houben, A. (2017). Live cell CRISPR‐imaging in plants reveals dynamic telomere movements. The Plant Journal.

Klemm, T., Mannuß, A., Kobbe, D., Knoll, A., Trapp, O., Dorn, A., & Puchta, H. (2017). The DNA translocase RAD5A acts independently of the other main DNA repair pathways and requires both its ATPase and RING domain for activity in Arabidopsis thaliana. The Plant Journal.

Vu, G. T., Cao, H. X., Fauser, F., Reiss, B., Puchta, H., & Schubert, I. (2017). Endogenous sequence patterns predispose the repair modes of CRISPR/Cas9‐induced DNA double strand breaks in Arabidopsis thaliana. The Plant Journal.

Wolter F. and Puchta H. (2017) Genome Engineering mit CRISPR/Cas– Revolution in der Pflanzenzüchtung BIOspektrum. DOI: 10.1007/s12268-017-0782-8

Pacher, M., & Puchta, H. (2017). From classical mutagenesis to nuclease‐based breeding–directing natural DNA repair for a natural end‐product. The Plant Journal. DOI:10.1111/tpj.13469

Wolter F. and Puchta H. (2017)  Knocking out consumer concerns and regulator’s rules: efficient use of CRISPR/Cas ribonucleoprotein complexes for genome editing in cereals. Genome Biology  DOI:10.1186/s13059-017-1179-1

Puchta H. (2017) Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Current Opinion in Plant Biology 2017, 36:1–8

Scheben A., Wolter F., Batley J., Puchta H., and Edwards D. (2017) Towards CRISPR/Cas crops – bringing together genomics and genome editing New Phytologist DOI: 10.1111/nph.14702



Röhrig, S., Schröpfer, S., Knoll, A and Puchta, H (2016) The RTR Complex Partner RMI2 and the DNA Helicase RTEL1 Are Both Independently Involved in Preserving the Stability of 45S rDNA Repeats in Arabidopsis thaliana. PLoS Genetics 12: e1006394

Kobbe, D., Kahles, A., Walter, M., Klemm, T., Mannuss, A., Knoll, A., Focke, M. and Puchta, H. (2016), AtRAD5A is a DNA translocase harboring a HIRAN domain which confers binding to branched DNA structures and is required for DNA repairin vivo. Plant J. doi:10.1111/tpj.13283

Barth A., Kobbe D. and Focke M. (2016) DNA-DNA kissing complexes as a new tool for the assembly of DNA nanostructures Nucleic Acids Research 44 , 1502-1513, 2016;DOI: 10.1093/nar/gkw014

Schiml, S., Fauser, F., & Puchta, H. (2016). Repair of adjacent single-strand breaks is often accompanied by the formation of tandem sequence duplications in plant genomes. Proceedings of the National Academy of Sciences, 201603823.

Schiml S. and Puchta H. (2016) Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas. Plant Methods (2016) 12:8 doi: 10.1186/s13007-016-0103-0

Puchta H. (2016) Using CRISPR/Cas in three dimensions: towards synthetic plant genomes, transcriptomes and epigenomes.  The Plant Journal (2016). doi: 10.1111/tpj.13100

Puchta, H. (2016). Breaking DNA in plants: how I almost missed my personal breakthrough. Plant Biotechnology Journal (2016) 14, pp. 437–440 doi: 10.1111/pbi.12420

Puchta, H. (2016). Genome engineering using CRISPR/Cas: getting more versatile and more precise at the same time Genome Biology 2016, 17:51 doi:10.1186/s13059-016-0922-3

Steinert, J., Schiml, S., & Puchta, H. (2016). Homology-based double-strand break-induced genome engineering in plants. Plant Cell Reports, 1-10.



Hermann N., Knoll A. and Puchta H. (2015) The nuclease FAN1 is involved in DNA crosslink repair in Arabidopsis thaliana independently of the nuclease MUS81 Nucl. Acids Res. DOI: 10.1093/nar/gkv208

Steinert J., Schiml S., Fauser F. and Puchta H. (2015) Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant J. DOI: 10.1111/tpj.13078

Pradillo, M., Knoll, A., Oliver, C., Varas, J., Corredor, E., Puchta, H., & Santos, J. L. (2015). Involvement of the cohesin cofactor PDS5 (SPO76) during meiosis and DNA repair in Arabidopsis thaliana. Frontiers in Plant Science, 6, 1034.

Trapp O., Knoll A., Mannuß M., and Puchta H. (2015). The translesion polymerase ζ has roles dependent and independent of the nuclease MUS81 and the helicase RECQ4A in DNA damage repair in Arabidopsis. Plant physiology (2015): pp-00806.

Puchta H. and Fauser F. (2015) Double-Strand Break Repair and Its Application to Genome Engineering in Plants. In Zhang F., Puchta H. and Thomson J.G. (eds.) Advances in New Technology for Targeted Modification of Plant Genomes, Springer, 1- 20.



Recker J., Knoll A. and Puchta H. (2014) The Arabidopsis thaliana Homolog of the Helicase RTEL1 Plays Multiple Roles in Preserving Genome Stability Plant Cell DOI: 10.1105/tpc.114.132472

Schiml S., Fauser F. and Puchta H. (2014) The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80,  1139–1150.

Bauknecht M. and Kobbe D. (2014) AtGEN1 and AtSEND1, two paralogs in Arabidopsis thaliana, possess Holliday junction resolvase activity.  Plant Physiol DOI: 10.​1104/​pp.​114.​237834

Eschbach V. and Kobbe D. (2014) Different Replication Protein A Complexes of Arabidopsis thaliana Have Different DNA-Binding Properties as a Function of Heterotrimer Composition. Plant Cell Physiol DOI: 10.1093/pcp/pcu076 

Fauser F., Schiml S. and Puchta H. (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79, 348-359

Dangel N.J., Knoll A. and Puchta H. (2014) MHF1 plays FANCM-dependent and -independent roles in DNA repair and homologous recombination in plants. Plant J 78, 822-833

Schröpfer S., Kobbe D., Hartung F., Knoll A. and Puchta H. (2014). Defining the roles of the N-terminal region and the helicase activity of RECQ4A in DNA repair and homologous recombination in Arabidopsis. Nucleic Acids Res. 42, 1684-1697

Fauser F. and Puchta H. (2014) Molekulare Chirurgie - Gezielte Genomveränderungen mithilfe von synthetischen Nucleasen - Ein Durchbruch für die moderne Pflanzenzüchtung. Naturwissenschaftliche Rundschau.

Schröpfer S., Knoll A., Trapp O. and Puchta H. (2014). DNA Repair and Recombination in Plants. Molecular Biology. S. H. Howell, Springer New York. 2: 51-93.

Knoll A., Fauser F. and Puchta H. (2014) DNA recombination in somatic plant cells: mechanisms and evolutionary consequences. Chromosome Res. 22: 191-201.

Knoll A., Schröpfer S. and Puchta H. (2014) The RTR complex as caretaker of genome stability and its unique meiotic function in plants. Front. Plant Sci. 5:33.

Puchta H. and Fauser F. (2014) Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J 78, 727–741



Bonnet S., Knoll A., Hartung F. and Puchta H. (2013). Different functions for the domains of the Arabidopsis thaliana RMI1 protein in DNA cross-link repair, somatic and meiotic recombination. Nucleic Acids Res. 41, 9349-9360

Klaue D., Kobbe D., Kemmerich F., Kozikowska A., Puchta H. and Seidel R. (2013). Fork sensing and strand switching control antagonistic activities of RecQ helicases. Nature communications.

Puchta H. and Fauser F. (2013) Gene Targeting in Plants: 25 years later. Int. J. Dev. Biol. 57: 629-637.



Roth N.,  Klimesch J.,  Dukowic-Schulze S.,  Pacher M.,  Mannuss A. and Puchta H. (2012). The requirement for recombination factors differs considerably between different pathways of homologous double-strand break repair in somatic plant cells. Plant J 72, 781-90

Knoll A., Higgins J.D., Seeliger K., Reha S.J., Dangel N.J., Bauknecht M., Schröpfer S., Franklin F.C.H. and Puchta H. (2012). The Fanconi Anemia Ortholog AtFANCM Ensures Ordered Homologous Recombination in Both Somatic and Meiotic Cells in Arabidopsis thaliana. Plant Cell 24, 1448-1464

Fauser F., Roth N., Pacher M., Ilg G., Sánchez-Fernández R., Biesgen C. and Puchta H. (2012) In planta gene targeting. Proc. Natl. Acad. Sci. USA 109, 7535-7540

Ehrenschwender T., Barth A., Puchta H. and Wagenknecht H.A. (2012). Metal-mediated DNA assembly using the ethynyl linked terpyridine ligand. Org. Biomol. Chem. 10, 46-48

Seeliger, K., Dukowic-Schulze, S., Wurz-Wildersinn, R., Pacher, M. and Puchta, H. (2012) BRCA2 is a mediator of RAD51- and DMC1-facilitated homologous recombination in Arabidopsis thaliana. New Phytologist 193: 364–375

Puchta H. and Hohn B. (2012) In Planta Somatic Homologous Recombination Assay Revisited: A Successful and Versatile, but Delicate Tool. Plant Cell, 24: 4324–43

Mannuss A., Trapp O. and Puchta H. (2012) Gene regulation in response to DNA damage. Biochim Biophys Acta 1819, 154-165.



Pérez R., Cuadrado, A., Chen, I-P., Puchta, H., Jouve, N. and De Bustos, A. (2011) The Rad50 genes of diploid and polyploid wheat species. Analysis of homologue and homoeologue expression and interactions with Mre11. Theoretical and Applied Genetics. 122: 251-262

Block-Schmidt, A., Dukowic-Schulze, S., Wanieck, K., Reidt, W. and Puchta, H. (2011) BRCC36A is epistatic to BRCA1 in DNA crosslink repair and homologous recombination in Arabidopsis thaliana. Nucleic Acids Res. 39: 146-154

Trapp O., Seeliger K. and Puchta H. (2011) Homologs of breast cancer genes in plants. Frontiers in Plant Science 2: 1-17.

Knoll A. and Puchta H. (2011) The role of DNA helicases and their interaction partners in genome stability and meiotic recombination in plants. Journal of Experimental Botany. J. Ex. Bot, 62: No 5, 1565–1579.



Mannuss A., Dukowic-Schulze S., Suer S., Hartung F., Pacher M. and Puchta H. (2010) RAD5A, RECQ4A and MUS81 have specific functions in homologous recombination and define different pathways of DNA repair in Arabidopsis thaliana. Plant Cell 22: 3318–3330

Kobbe D., Focke M. and Puchta H. (2010) Purification and Characterization of RecQ Helicases of Plants. In: M.M. Abdelhaleem (ed.), Helicases, Methods in Molecular Biology (Humana Press) 587, Chapter 14: 195-209

Puchta H. and Hohn B. (2010) Breaking news: Plants mutate right on target. Proc. Natl. Acad. Sci. USA 107, 11657-11658.



Kobbe D., Blanck S., Focke M. and Puchta H. (2009) Biochemical characterization of AtRECQ3 reveals significant differences relative to other RecQ helicases. Plant Physiol. 151: 1658-1666

Blanck S., Kobbe D., Hartung F., Fengler K., Focke M. and Puchta H. (2009) A SRS2 homologue from Arabidopsis thaliana disrupts recombinogenic DNA intermediates and facilitates single strand annealing. Nucleic Acids Res. 37: 7163-7176

Watanabe K., Pacher M., Dukowic S., Schubert V., Puchta H. and Schubert I. (2009) The SMC5/6 complex promotes reorganization of sister chromatid arrangement and homologous recombination after DNA damage in Arabidopsis thaliana. Plant Cell 21: 2688-2699

Eing C.J., Bonnet S., Pacher M., Puchta H. and Frey W. (2009) Effects of nanosecond pulsed electric field exposure on Arabidopsis thaliana. IEEE Transactions on Dielectrics and Electrical Insulation 16: 1322-1328

Geuting V., Kobbe D., Hartung F., Dürr J., Focke M. and Puchta H. (2009) Two distinct MUS81-EME1 complexes from Arabidopsis thaliana process Holliday junctions. Plant Physiol. 150: 1062-1071

Puchta H, Kobbe D, Wanieck K, Knoll A, Suer S, Focke M and Hartung F. (2009) Role of Human Disease Genes for the Maintenance of Genome Stability in Plants. In: Q.Y. Shu (ed.), Induced Plant Mutations in the Genomics Era. Food and Agriculture Organization of the United Nations, Rome, 2009, 129-132



Hartung F., Suer S., Knoll A., Wurz-Wildersinn R. and Puchta H. (2008) Topoisomerase 3A and RMI1 suppress somatic crossovers and are essential for resolution of meiotic recombination intermediates in Arabidopsis thaliana. PLoS Genetics 4 (12), 1-11

Kobbe D., Blanck S., Demand K., Focke M. and Puchta H. (2008) AtRECQ2, a RecQ-helicase homologue from Arabidopsis thaliana, is able to disrupt different recombinogenic DNA-structures in vitro. Plant J. 55, 397-405

Chen I.-P., Mannuss A., Orel N., Heitzeberg F. and Puchta H. (2008) A homologue of ScRAD5 is involved in DNA repair and homologous recombination in Arabidopsis. Plant Physiol. 146, 1786-1796



Hartung F., Wurz-Wildersinn R., Fuchs J., Schubert I., Suer S. and Puchta H. (2007) The catalytically active tyrosine residues of both SPO11-1 and SPO11-2 are required for meiotic DSB induction in Arabidopsis. Plant Cell 19, 3090-3099

Hartung F., Suer S., and Puchta H. (2007) Two closely related RecQ-helicases have antagonistic roles in homologous recombination and DNA repair in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 104, 18836-18841

Pacher M., Schmidt-Puchta W. and Puchta H. (2007) Two unlinked double-strand breaks can induce reciprocal exchanges in plant genomes via homologous recombination and non-homologous end-joining. Genetics 175, 21-29



Hartung F., Suer S., Bergmann T. and Puchta H. (2006) The Role of AtMUS81 in DNA Repair and its Genetic Interaction with the Helicase AtRecQ4A. Nucleic Acids Res. 34, 4438-4448

Reidt W., Wurz R., Wanieck K., Chu H.H. and Puchta H. (2006) A homologue of the breast cancer associated gene BARD1 is involved in DNA repair in plants. EMBO J 25, 4326-4337

Hartung F. and Puchta H. (2006) The RecQ-like gene family in plants. J. Plant Physiol. 160, 287-296.



Puchta H. and Hohn B. (2005) Green light for gene targeting in plants. Proc. Natl. Acad. Sci. USA 102, 11961-11962.

Puchta H. (2005) The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J. Ex. Bot., 56: No 409, 1- 14.



Heitzeberg F., Chen, I.-P., Orel N., Hartung F., Angelis K.J. and Puchta H. (2004) The Rad17 homologue of Arabidopsis is involved in the regulation of DNA damage repair and homologous recombination. Plant Journal 38, 954-968.

Schmidt-Puchta W., Orel, N., Kirik A. and Puchta H. (2004) Intrachromosomal homologous recombination in Arabidopsis thaliana. Methods Mol. Biol. 262, 25-35.

Hartung F. and Puchta H. (2004) What comparative genomics tells us about the evolution of the eukaryotic recombination machinery. Current Genomics 5, 109-121.



Chen, I.-P., Schubert I., Haehnel U., Altschmied L. and Puchta H. (2003) The transcriptional response of Arabidopsis to genotoxic stress – a high density colony array study (HDCA). Plant Journal 35, 771-786.

Orel N., Kirik A. and Puchta H. (2003) Different pathways of homologous recombination are used for the repair of double-strand breaks within tandemly arranged sequences in the plant genome. Plant Journal 35, 604-612.

Orel, N. and Puchta H. (2003) Differences in the processing of DNA ends in Arabidopsis and tobacco and its implication for genome evolution. Plant Mol. Biol. 51, 523-531.

Plchova H., Hartung F., and Puchta H. (2003) Biochemical characterization of a exonuclease from Arabidopsis thaliana reveals similarities to the DNA exonuclease of the human Werner protein. J. Biol. Chem. 278, 44128-44138.

Hohn B. and Puchta H. (2003) Some like it sticky: gene targeting in rice. Trends in Plant Sci. 8, 51-53.

Puchta H. (2003) Towards the ideal GMP: Homologous recombination and marker gene excision. J. Plant Physiol. 160, 743-754.

Puchta H. (2003) Marker-free transgenic plants. Plant Cell Tissue Organ Cult. 74, 123-134.



Gisler B., Salomon S. and Puchta H. (2002) The role of double-strand break-induced allelic homologous recombination in somatic plant cells. Plant Journal 32, 277-284.

Hartung F., Angelis K.J., Meister A., Schubert I., Melzer M. and Puchta H. (2002) An archaebacterial topoisomerase homologue not present in other eukaryotes is indispensable for cell proliferation of plants. Current Biology 12, 1787-1791.

Hartung F., Blattner F.R. and Puchta H. (2002) Intron gain and loss but not intron sliding are common mechanisms during evolution of the conserved eukaryotic recombination machinery. Nucleic Acids Res. 30, 5175-5181.

Siebert, R. and Puchta H. (2002) Efficient Repair of Genomic Double-Strand Breaks via Homologous Recombination between Directly Repeated Sequences in the Plant Genome. Plant Cell 14, 1121-1131.

Puchta H. (2002) Gene replacement by homologous recombination in plants. Plant Mol. Biol. 48, 173-182.



Hartung F. and Puchta H. (2001) Molecular characterization of homologues of both subunits A (SPO11) and B of the archaebacterial topoisomerase 6 in plants. Gene, 271, 81-86.

Hohn B., Levy A. and Puchta H. (2001) Elimination of selection markers from transgenic plants. Curr. Opin. Biotech. 12, 139-143.



Hartung F., Plchova F. and Puchta H. (2000) Molecular characterization of RecQ homologues in Arabidopsis thaliana. Nucleic Acids Res. 28, 4275-4282.

Hartung F. and Puchta H. (2000) Molecular characterization of two paralogous SPO11 homologues in Arabidopsis thaliana. Nucleic Acids Res. 28, 1548-1554.

Kirik A., Salomon S. and Puchta H. (2000) Species-specific double-strand break repair and genome evolution in plants. EMBO J. 19, 5562-5566.

Reiss B.. Schubert I., Köpchen K., Wendeler E., Schell J. and Puchta H. (2000) RecA stimulates sister chromatid exchange and the fidelity of double-strand break repair, but not gene targeting, in plants transformed by Agrobacterium. Proc. Natl. Acad. Sci. USA 97, 3358-3363.

Ries G., Heller W., Puchta H., Sandermann H.J., Seidlitz H.K. and Hohn B. (2000) Elevated UV-B radiation reduces genome stability in plants. Nature 406, 98-101.

Puchta H. (2000) Removing selectable marker genes: taking the shortcut. Trends in Plant Sci. 5, 273-274.



Hartung F. and Puchta H. (1999) Isolation of the complete cDNA of the Mre11 homologue of Arabidopsis (Accession No. AJ243822) indicates conservation of DNA recombination mechanisms between plants and other eucaryotes (PGR 99-132). Plant Physiol. 121, 311.

Korzun V., Börner A., Siebert R., Malyshev S., Hilpert M., Kunze R. and Puchta H. (1999) Chromosomal location and genetic mapping of the mismatch repair gene homologs MSH2, MSH3 and MSH6 in rye and wheat. Genome 42, 1255-1257.

Puchta H. (1999) Double-strand break-induced recombination between ectopic homologous sequences in somatic plant cells. Genetics 152, 1173-1181.

Puchta H. (1999) Use of I-SceI to induce double-strand breaks in Nicotiana. Methods Mol. Biol. 113, 447-451.

Hohn B. and Puchta H. (1999) Gene therapy in plants. Proc. Natl. Acad. Sci. USA 96, 8321-8323.

Puchta H. (1999) Doppelstrangbruchreparatur und Genomevolution bei Pflanzen. Biospektrum 5, 105-108.



Puchta H. (1998) Repair of genomic double-strand breaks in somatic plant cells by one-sided invasion of homologous sequences. Plant J. 13, 331-340.

Salomon S. and Puchta H. (1998) Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J. 17, 6086-6095.

Puchta H. (1998) Towards targeted transformation in plants. Trends in Plant Sci. 3, 77-78.



Puchta H., Dujon B. and Hohn B. (1996) Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc. Natl. Acad. Sci. USA 93, 5055-5060.

Puchta H. and Hohn B. (1996) From centiMorgans to basepairs: Homologous recombination in plants. Trends in Plant Sci. 1, 340-348.



Akama K., Puchta H. and Hohn B. (1995) Efficient Agrobacterium-mediated transformation of Arabidopsis thaliana using the bar gene as selectable marker. Plant Cell Rep., 14, 450-454.

Puchta H., Swoboda P., Gal S., Blot M. and Hohn B. (1995) Somatic intrachromosomal homologous recombination events in populations of plant siblings. Plant Mol. Biol. 28, 281-292.

Puchta H., Swoboda P. and Hohn B. (1995) Induction of intrachromosomal homologous recombination in whole plants. Plant J. 7, 203-210.



Swoboda P., Gal S., Hohn B. and Puchta H. (1994) Intrachromosomal homologous recombination in whole plants. EMBO J. 13, 484-489.

Tinland B., Hohn B. and Puchta H. (1994) Agrobacterium tumefaciens transfers single stranded T-DNA into the plant cell nucleus. Proc. Natl. Acad. Sci. USA 91, 8000-8004.

Puchta H., Swoboda P. and Hohn B. (1994) Homologous recombination in plants. Experientia 50, 277-284

Puchta H. and Meyer P. (1994) Substrate specificity of plant recombinases determined in extrachromosomal recombination systems. In “Homologous recombination and gene silencing in plants”, J. Paszkowski Edt., Kluwer Academic Publishers, Dordrecht Niederlande, 123-155.


1988 - 1993

Puchta H., Dujon B. and Hohn B. (1993) Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res. 21, 5034-5040.

Puchta H., Kocher S. and Hohn B. (1992) Extrachromosomal homologous DNA recombination in plant cells is fast and is not affected by CpG methylation. Mol. Cell. Biol. 12, 3372-3379.

Puchta H. and Hohn B. (1991) The mechanism of extrachromosomal homologous DNA recombination in plant cells. Mol. Gen. Genet. 230, 1-7.

Puchta H. and Hohn B. (1991) A transient assay in plant cells reveals a positive correlation between extrachromosomal recombination rates and length of homologous overlap. Nucleic Acids Res. 19, 2693-2700.

Puchta H., Ramm K., Luckinger R., Hadas R., Bar-Joseph M. and Sänger H.L. (1991) Primary and secondary structure of citrus viroid IV (CVd IV), a new chimeric viroid present in dwarfed grapefruit in Israel. Nucleic Acids Res. 19, 6640.

Collasius M., Puchta H., Schlenker S. and Valet G. (1991) Analysis of unknown DNA sequences by polymerase chain reaction (PCR) using a single specific primer and a standardized adaptor. J. Virol. Meth. 32, 115-119.

Puchta H., Ramm K. and Sänger H.L. (1991) Hop latent viroid (HLVd) and the worldwide distribution of latent viroids in vegetatively propagated plants. In “Proceedings Int. Workshop on Hop Virus Diseases”, A. Eppler Edt., German Phytomedical Society Series, Ulmer Verlag Stuttgart, 181-190.

Puchta H., Herold T., Verhoeven K., Roenhorst A., Ramm K., Schmidt-Puchta W. and Sänger H.L. (1990) A new strain of potato spindle tuber viroid (PSTVd-N) exhibits major sequence differences as compared to all other PSTVd strains sequenced so far. Plant Mol. Biol. 15, 509-511.

Puchta H., Luckinger R., Yang X., Hadidi A. and Sänger H.L. (1990) Nucleotide sequence and secondary structure of apple scar skin viroid (ASSVd) from China. Plant Mol. Biol. 14, 1065-1067.

Puchta H., Ramm K., Luckinger R., Freimüller K. and Sänger H.L. (1989) Nucleotide sequence of a hop stunt viroid (HSVd) isolate from the German grapevine rootstock 5BB as determined by PCR mediated sequence analysis. Nucleic Acids Res. 17, 5841.

Puchta H. and Sänger H.L. (1989) Sequence analysis of minute amounts of viroid RNA using the polymerase chain reaction (PCR). Arch. Virol. 106, 335-340.

Puchta H., Ramm K., Hadas R., Bar Joseph M., Luckinger R., Freimüller K. and Sänger H.L. (1989) Nucleotide sequence of a hop stunt viroid (HSVd) isolate from grapefruit in Israel. Nucleic Acids Res. 17, 1247.

Lee Y.J., Puchta H., Ramm K. and Sänger H.L. (1988) Nucleotide sequence of the Korean strain of hop stunt viroid (HSV). Nucleic Acids Res. 16, 8708.

Puchta H., Ramm K. and Sänger H.L. (1988) Molecular and biological properties of a cloned and infectious new sequence variant of cucumber pale fruit viroid (CPFV). Nucleic Acids Res. 16, 8171.

Puchta H. and Sänger H.L. (1988) An improved procedure for the rapid one step cloning of full length viroid cDNA. Arch. Virol. 101, 137-140.

Puchta H., Ramm K. and Sänger H.L. (1988) The molecular structure of hop latentviroid (HLV), a new viroid occurring worldwide in hops. Nucleic Acids Res. 16, 4197-4216.

Puchta H., Ramm K. and Sänger H.L. (1988) Nucleotide sequence of a hop stunt viroid from the German grapevine cultivar “Riesling”. Nucleic Acids Res. 16, 2730.