New Paths - New Ideas

Our research addresses signals used by cells to talk to each other and to organise themselves. To investigate these signals in action, we have developed over many years together with the Guber Lab at the Institute for Microstructure Technology (IMT) at the Campus Nord a microfluidic chip for plant cells. A molecule becomes a signal, when it "means" something to the recipient. Specificity arises in the eye of the recipient, therefore, and is result of a long evolutionary history. This holds true not only within an individual organism, but also between organisms. In frame of the Science Offensive of the Interreg Upper Rhine our research network DialogProTec explored this idea to find signals, by which fungi manipulate plant immunity to infect plants. Other signals are used by plants themselves to persuade competitors into suicide. Based on such signals, novel strategies for plant protection can be developed that are more sustainable, because they use chemical communication originating from evolution itself.

more on DialogProTec

What came out from this project? A review in BioSpektrum.

Zelluläre Biotechnologie

What is it about?

Each individual plant cell can generate an entire organism. We cannot do that. Central for this ability is an internal "direction" of the individual cell. This direction is continuously adjusted. When a multicellular plant body forms, the cytoskeleton is aligned in response to chemical oscillations. How is this "direction" generated? Why is it continuosly "questioned"? How do individual cells join into an entity? Can we join plant cells to play "metabolic LEGO"? How can a cell sense, whether it is still intact? How does cell architectur define its molecular activities?




Cell and Organism

Plant cells organise into an entity. Axis and direction of the cell are ruled by the cytoskeleton, but plants can also integrate signals from the environment, such as light. How does this work?



Metabolic LEGO

Plants can generate numerous compounds, the impact on medicine is tremendous. This ability is based on a kind of chemical teamwork. Can we simulate this for biotechnology to safeguard endangered plants from extinction



Integrity Sensing

A flow of signals between membrane and cytoskeleton allow the cell to sense, whether it is still intact. Using novel methodology such as nanosecond bioelectris or chemical engineering we can manipulate this flow.


Form Rules Matter

The causa formalis is one of the four Aristotelian Causes (besides effect, matter, and purpose). We investigate, how plant cells adjust their inner architecture to steer molecular events.