M4F Aktuell: Die Rolle von Stickstoff

Esca & Co sind keine neue Krankheit. Neu ist nur das epidemische Ausmaß in Gefolge des Klimawandels. Unsere Arbeiten zur Immunität der Pflanze haben gezeigt, dass der Ausbruch von Symptomen mit einer gestörten chemischen Kommunikation zwischen holzbesiedelnden Pilzen und der Pflanze zusammenhängen. Einige der Signale konnten wir sogar schon aufklären. Zentral hierbei sind phenolische Substanzen der Pflanze, die entweder als Abwehrstoffe gegen Mikroben gebildet werden (sogenannte Phytoalexine) oder die als Vorläufer des Holzstoffs Lignin fungieren und dann, wenn aufgrund von Klimastress die Ligninbildung verlangsamt ist, sich anhäufen und dem Pilz signalisieren, dass sein "Wirt" geschwächt ist. Die Eintrittspforte in diesen Stoffwechselweg ist die Desaminierung der Aminosäure Phenylalanin, wobei Ammonium frei wird. Ammonium wiederum spielt für eine zweite Eintrittspforte eine wichtige Rolle - durch Bindung an die Aminosäure Glutamat wird Glutamin gebildet, von wo aus diese Aminogruppe für die Bildung aller anderen Aminosäuren weitergereicht wird. Die Bildung von Proteinen und die Bildung von phenolischen Substanzen sind also eng miteinander verwoben. Können wir diese Verkettung dafür nutzen, um über Veränderung des Stickstoffpegels (zum Beispiel durch Mikroben) das Krankheitsgeschehen günstig zu beeinflussen? Frau Dr. Elnaz Zareei ist nun mit einem Georg-Forster-Forschungsstipendiums für zwei Jahre aus dem Iran ans JKIP gekommen, um genau diese Frage zu untersuchen.

 

M4F - Microbes for Future

Wir wollen Mikroben im Boden nutzen, um Weinreben gegen die durch den Klimawandel bedingte Esca-Krankheit zu wappnen.

Der Klimawandel ist auch in unserer Region angekommen. Die heißen und trockenen Sommer hinterlassen auch im Weinbau immer mehr Spuren. An sich harmlose Pilze, die als zumeist friedliche "Mitesser" im Holz des Weinstocks siedeln, werden plötzlich zu üblen Killern, die ihre Wirtspflanze binnen weniger Tage mit Giftstoffen umbringen und dann die Energie der Leiche nutzen, um sich der sexuellen Fortpflanzung hinzugeben und dann über die Sporen sich einen neuen, ertragreicheren Wirt zu suchen. Es handelt sich nicht um eine neue Krankheit. Die erste Beschreibung dieses sogenannten apoplektischen Zusammenbruchs stammt aus dem im frühen Mittelalter herausgegebenen Buch Kitab al Filaha, das damals das gesammelte landwirtschaftliche Wissen der arabischen Welt wiedergab. Freilich ist dieses Phänomen, unter den Winzern auch als Esca-Syndrom bekannt (weil das Holz zunderartig, lateinisch esca, zersetzt wird) immer häufiger geworden. Allein im Elsass werden die 2018 durch Esca verursachten Schäden auf mehr als 1 Mrd. € geschätzt.

In unseren früheren Forschungen konnten wir zeigen, dass die Apoplexie von einer fehlgeleiteten chemischen Kommunikation zwischen dem gestressten Wirt und dem Pilz verursacht wird. Wir konnten ebenfalls zeigen, dass manche Europäischen Wildreben in der Lage sind, diese Kommunikation zu ihren Gunsten zu verändern und so resistent sind. Wenn wir ein Verfahren finden, dies auch in unseren anfälligen Kulturreben hinzubekommen, könnten wir so den Weinbau klimafest machen.

Genau dies ist das Ziel unseres Projekts „Microbes for Future“. So wie wir eine Darmflora haben, die für unser Immunsystem wichtig ist, besitzen Pflanzen in ihrem Wurzelraum ein sorgsam gepflegtes Pflanzenmikrobiom. Wir wollen nun herausfinden, wie sich dieses Mikrobiom von kranken und gesunden Reben unterscheidet und ob wir es günstig beeinflussen können. Dazu wollen wir sogenannte terra preta (Schwarzerde) einsetzen und untersuchen, wie wir dadurch das Mikrobiom und das pflanzlichen Immunsystem verbessern können.

Das Projekt ist eine interdisziplinäre Zusammenarbeit zwischen dem Botanischen Institut (Prof. Dr. Peter Nick) und dem Institut für Biologische Grenzflächen V (Prof. Dr. Anne Kaster) und wird aus dem Strategiefond des Präsidiums gefördert.